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Abstract. We consider a nonlinear Dirichlet problem driven by a nonautonomous (p,q)-differential
operator and with a reaction having the competing effects of a parametric singular term and a (p− 1)-
linear perturbation which can be resonant as x→∞ with respect to the principal eigenvalue of the relevant
operator. If the resonance is from the left, then we demonstrate that the problem has a positive solution
for all values of the parameter and if the driving differential operator is only the nonautonomous p-
Laplacian, then the positive solution is unique. On the other hand, if the resonance is from the right,
then we prove an existence and multiplicity theorem which is global with respect to the parameter (a
bifurcation-type theorem). Also, we conduct a detailed study of the continuity properties of solution
multifunction.
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1. INTRODUCTION

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we study the
following nonlinear singular Dirichlet problem{

−∆
a1
p u(z)−∆

a2
q u(z) = λu(z)−η + f (z,u(z)) in Ω,

u|∂Ω = 0,0 < η < 1 < q < p,λ > 0,u > 0.
(pλ )

For a ∈C0,1(Ω) (the space of all Lipschitz continuous functions defined on Ω), with a(z) ≥
ĉ > 0 for all z∈Ω and for s∈ (1,∞), by ∆a

s we denote the nonautonomous s-Laplace differential
operator (the weighted s-Laplacian) defined by

∆
a
s u = div(a(z)|Du|s−2Du) ∀u ∈W 1,s

0 (Ω).
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Problem (pλ ) is driven by the sum of two such operators with different exponents and possi-
bly different weights. So the differential operator in (pλ ) is nonautonomous and nonhomoge-
neous. In the reaction (right hand side) of (pλ ), we have the combined effects of a parametric
singular term x→ λx−η with 0<η < 1 and λ > 0 being the parameter and of Caratheodory per-
turbation f (z,x) (that is, the function f (z,x) is measurable in z, continuous in x, hence jointly
measurable, see Papageorgiou-Winkert [22, p.108]). We assume that f (z, ·) exhibits (p− 1)-
linear growth as x→ +∞. Our aim is to prove the existence and multiplicity of positive so-
lutions. Our analysis reveals that the existence and multiplicity of positive solutions depends
on whether asymptotically as x→ +∞, the quotient f (z,x)

xp−1 stays below or above λ̂
a1
1 (p) > 0,

the principal eigenvalue of ((−∆
a1
p ,W 1,p

0 (Ω)). If the limsupx→+∞

f (z,x)
xp−1 stays below λ̂

a1
1 (p)

with possible full resonance, then we can produce one positive smooth solution which is ac-
tually unique for equations driven by the −∆

a1
p differential operator and the quotient function

x→ f (z,x)
xp−1 is nonincreasing on

o
R+= (0,+∞). On the other hand, if liminfx→+∞

f (z,x)
xp−1 stays above

λ̂
a1
1 (p)> 0 with possible full resonance, we can have existence and multiplicity of positive so-

lutions for all λ > 0 small. The result is global in λ > 0 (a bifurcation-type theorem). For this
case we study the dependence of the solution set on the parameter λ > 0.

In the past, most of the works on singular equations assumed that f (z, ·) is (p−1)-superlinear
as x→ +∞. We refer to the works Haitao [7], Hirano-Saccon-Shioji [9], Sun-Wu-Long [27]
(semilinear equations), Giacomoni-Schindler-Takac [6], Papageorgiou-Qin-Rădulescu [16],
Papageorgiou-Rădulescu-Zhang [19], and Papageorgiou-Zhang [23, 24] (nonlinear equations).
Problems with a (p− 1)-linear perturbation were considered only recently by Papageorgiou-
Vetro-Zhang [21] and Papageorgiou-Zhang [25], for the equations driven by the autonomous
(p,q)-Laplacian and under conditions on f (z, ·) which exclude the possibility of resonance
with respect to λ̂1(p)> 0, the principal eigenvalue of (−∆p,W

1,p
0 (Ω)). Our work here extends

the results of the aforementioned papers.

2. MATHEMATICAL BACKGROUND

The main spaces in the analysis of problem (pλ ) are the Sobolev space W 1,p
0 (Ω) and the

Banach space C1
0(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}. On account of the Poincaré inequality, on

W 1,p
0 (Ω) we can use the equivalent norm ‖ ·‖ defined by ‖u‖= ‖Du‖p for all u ∈W 1,p

0 (Ω). The
Banach space C1

0(Ω) is an ordered Banach space with positive (order) cone

C+ = {u ∈C1
0(Ω) : 0≤ u(z) for all z ∈Ω}.

This cone has nonempty interior given by

intC+ = {u ∈C+ : 0 < u(z),
∂u
∂n
|∂Ω < 0},

where ∂u
∂n = (Du,n)RN with n(·) being the outward unit normal on ∂Ω.

For a ∈ C0,1(Ω) with a(z) ≥ ĉ > 0 for all z ∈ Ω and s ∈ (1,∞), we consider the following
nonlinear eigenvalue problem

−∆
a
s u(z) = λ̂ |u(z)|s−2u(z) in Ω, u|∂Ω = 0. (2.1)
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By σa(s), we denote the spectrum (that is, the set of eigenvalues of (2.1)). From Liu-Papageorgiou
[13], we know that (2.1) admits a smallest eigenvalue λ̂ a

1 (s) such that

• λ̂
a
1 (s)> 0;

• λ̂
a
1 (s) is isolated, that is, we can find ε > 0 such that

(λ̂ a
1 (s), λ̂

a
1 (s)+ ε)∩σa(s) = /0;

• λ̂
a
1 is simple, that is, if û, v̂ are eigenfunctions for λ̂

a
1 (s), then

û = θ v̂ for some θ ∈ R\{0};

• λ̂
a
1 (s) = inf{

∫
Ω

a(z)|Du|p dz
‖u‖p

p
: u ∈W 1,p

0 (Ω),u 6= 0}. (2.2)

The infimum in (2.2) is realized on the corresponding one dimensional eigenspace, and the
elements of which do not change sign. If û is any eigenfunction of (2.1), then the nonlinear
regularity theory of Lieberman [12] implies that û∈C1

0(Ω̄). For the eigenfunctions of λ̂ a
1 (s)> 0,

using the nonlinear maximum principle (see Pucci-Serrin [26]), we have that they belong in
intC+ or in -intC+. We mention that only λ̂ a

1 (s)> 0 has eigenfunctions of constant sign. All the
other eigenvalues have nodal (sign-changing) eigenfunctions. Moreover, û1(s) ∈ intC+ is the
eigenfunction with ‖û1(s)‖s = 1. We also use a weighted version of (2.1). So, let m ∈ L∞(Ω)\
{0} with m(z)≥ 0 for a.a z ∈Ω and consider the following nonlinear eigenvalue problem

−∆
a
s u(z) = λ̃m(z)|u(z)|s−2u(z) in Ω, u|∂Ω = 0.

This problem has a smallest eigenvalue λ̃ a
1 (s,m)> 0 which has the same properties as λ̂ a

1 (s).
The same is true for the eigenfunctions. In this case, the variational characterization of λ̃ a

1 (s,m)>
0 has the following form

λ̃
a
1 (s,m) = inf{

∫
Ω

a(z)|Du|p dz∫
Ω

m(z)|u|p dz
: u ∈W 1,p

0 (Ω),u 6= 0}. (2.3)

In what follows, for convenience, by ρa1,p : W 1,p
0 (Ω)→ R and ρa2,q : W 1,q

0 (Ω)→ R, we denote
the modular functions defined by

ρa1,p(Du) =
∫

Ω

a1(z)|Du|p dz for all u ∈W 1,p
0 (Ω),

and
ρa2,q(Du) =

∫
Ω

a2(z)|Du|q dz for all u ∈W 1,q
0 (Ω).

Both are continuous and convex functions, and hence they are also weakly lower semicontinu-
ous (Mazur’s lemma).

Again all the other eigenvalues have nodal eigenfuntions. Using (2.2), (2.3), and the proper-
ties of λ̂ a

1 (s) and of λ̃1(s,m) mentioned above, we have the following two useful propositions
(see Liu-Papageorgiou [13, 14]).

Proposition 2.1. If θ ∈ L∞(Ω), θ(z) ≤ λ̂ a
1 (s) for a.a z ∈ Ω and θ 6≡ λ̂ a

1 (s), then there exists
c0 > 0 such that

c0‖u‖s
1,s ≤ ρa,s(Du)−

∫
Ω

θ(z)|u|s dz for all u ∈W 1,s
0 (Ω).
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Proposition 2.2. If m, m̂ ∈ L∞(Ω) \ {0}, 0 ≤ m(z) ≤ m̂(z) for a.a z ∈ Ω and m 6= m̂, then
λ̃ a

1 (s, m̂)< λ̃ a
1 (s,m).

Our hypotheses on the weights a1(·),a2(·) are the following:

H0: a1,a2 ∈C0,1(Ω), 0 < ĉ≤ a1(z),a2(z) for all z ∈Ω.

We introduce the operators Aa1
p : W 1,p

0 (Ω)→W−1,p′(Ω) = W 1,p
0 (Ω)∗( 1

p +
1
p′ = 1) and Aa2

q :

W 1,q
0 (Ω)→W−1,q′(Ω) =W 1,q

0 (Ω)∗(1
q +

1
q′ = 1) defined by

〈Aa1
p (u),h〉=

∫
Ω

a1(z)|Du|p−2(Du,Dh)RN dz for all u,h ∈W 1,p
0 (Ω),

and

〈Aa2
q (u),h〉=

∫
Ω

a2(z)|Du|q−2(Du,Dh)RN dz for all u,h ∈W 1,q
0 (Ω).

We have W 1,p
0 (Ω) ↪→W 1,q

0 (Ω) continuously and densely and so W−1,q′(Ω) ↪→W−1,p′(Ω)
continuously and densely (see Gasinski-Papageorgiou [4], p.46). We can define V = Aa1

p +Aa2
q :

W 1,p
0 (Ω)→W−1,p′(Ω). For these operators, we have the following properties (see Gasinski-

Papageorgiou [4], p.279).

Proposition 2.3. If hypotheses H0 hold and K : W 1,p
0 (Ω)→W−1,p′(Ω) is equal to Aq1

p or Aa2
q

or V , then K(·) is bounded (that is, maps bounded sets to bounded ones), continuous, strictly
monotone (hence maximal monotone too) and of type (S)+, that is,

“if un
w→ u in W 1,p

0 (Ω) and limsupn→∞0〈K(un),un−u〉 ≤ 0, then un→ u in W 1,p
0 (Ω).”

If u : Ω→ R is a measurable function, we set

u+ = max{u,0} and u− = max{−u,0}.

Then u = u+−u−, |u|= u++u−. If u ∈W 1,p
0 (Ω), then u± ∈W 1,p

0 (Ω). If u,v : Ω→ R are two
measurable functions and u≤ v, then

[u,v] = {h ∈W 1,p
0 (Ω) : u(z)≤ h(z)≤ v(z) for a.a z ∈Ω},

intC1
0(Ω)[u,v] = interior in C1

0(Ω) of [u,v]∩C1
0(Ω),

[u) = {h ∈W 1,p
0 (Ω) : u(z)≤ h(z) for a.a z ∈Ω}.

We write that 0≺ u if, for all K ⊆Ω compact, 0 < cK ≤ u(z) for a.a z∈K. Evidently if 0≺ u,
then 0 < u(z) for a.a z ∈Ω and if u ∈C(Ω), u(z)> 0 for all z ∈Ω, then 0≺ u.

3. EXISTENCE AND MULTIPLICITY OF SOLUTIONS

In the first part, we investigate the case that limsupx→+∞

f (z,x)
xp−1 is below λ̂

a1
1 (p) > 0. In this

case, we can only show the existence of a positive solution. In fact, if the differential operator
is only −∆

a1
p (homogeneous case), then we prove that the positive solution is unique.

The hypotheses on the perturbation f (z,x), are the following:
H1: f : Ω×R→ R is a Carathéodory function such that
(i) for every ρ > 0, there exists âρ ∈ L∞(Ω) such that

| f (z,x)| ≤ âρ(z) for a.a z ∈Ω, all |x| ≤ ρ;
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(ii) limsupx→+∞

f (z,x)
xp−1 ≤ λ̂

a1
1 (p) uniformly for a.a z ∈Ω and if F(z,x) =

∫ x
0 f (z,s)ds, then

−β0 ≤ f (z,x)x− pF(z,x) for a.a z ∈Ω, all x≥ 0, some β0 > 0;

(iii) there exist a function θ ∈ L∞(Ω) and δ > 0 such that

θ(z)≤ λ̂
a2
1 (q) for a.a z ∈Ω, θ 6≡ λ̂

a2
1 (q),

limsup
x→0+

f (z,x)
xq−1 ≤ θ(z) uniformly for a.a z ∈Ω,

0≤ f (z,x) for a.a z ∈Ω, all 0≤ x≤ δ .

Remark 3.1. Hypothesis H1(iii) implies that f (z,0) = 0 for a.a z ∈Ω. Since we are interested
in positive solutions and the above hypotheses concern the positive semiaxis R+ = [0,∞), we
may assume that f (z,x) = 0 for a.a z ∈ Ω, all x ≤ 0. Hypothesis H1(ii) permits for resonance
with respect to λ̂

a1
1 (p) to occur as x→ +∞. None of the earlier works on the subject allowed

resonance (see [21, 25]). Also, we do not assume that f is globally positive (as is the case in
[21]) or that it necessary changes sign near zero (as the case in [25]). Hypotheses H1 are more
general and include both cases.

First we consider the following auxiliary purely singular problem{
−∆

a1
p u(z)−∆

a2
q u(z) = λu(z)−η in Ω,

u|∂Ω = 0, λ > 0,u > 0.
(Qλ )

From Papageorgiou-Zhang [25] (see the proof of Proposition 3.5), we have the following result.

Proposition 3.1. If hypotheses H0 hold and λ > 0, then problem (Qλ ) has a unique positive
solution

ūλ ∈ intC+,

{ūλ}λ>0 is nondecreasing and ūλ → 0 in C1
0(Ω) as λ → 0+.

We introduce the following two sets:

L= {λ > 0 : problem (pλ ) has a positive solution}
(set of admissible parameters),

Sλ = set of positive solutions of (pλ ).

Proposition 3.2. If hypotheses H0 and H1 hold, then L =
o
R+= (0,+∞) and, for every λ > 0,

/0 6= Sλ ⊆ intC+.

Proof. Let λ > 0. Using Proposition 3.1, we can find µ ∈ (0,λ ) small such that 0≤ uµ(z)≤ δ

for all z ∈Ω, where δ > 0 is as in hypotheses H1(iii). We introduce the Carathéodory function
gλ (z,x) defined by

gλ (z,x) =

{
λ ūµ(z)−η + f (z,x+) if x≤ ūµ(z)
λx−η + f (z,x) if ūµ(z)< x.

(3.1)

We set Gλ (z,x) =
∫ x

0 gλ (z,s)ds and consider the functional ψλ : W 1,p
0 (Ω)→ R defined by

ψλ (u) =
1
p

ρa1,p(Du)+
1
q

ρa2,q(Du)−
∫

Ω

Gλ (z,u)dz for all u ∈W 1,p
0 (Ω).
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We see that ψλ ∈C1(W 1,p
0 (Ω)) (see Papageorgiou-Smyrlis [20, Proposition 3]).

Claim: ψλ (·) is coercive.
For a.a z ∈Ω and all x > 0, we have

d
dx

(
F(z,x)

xp ) =
f (z,x)xp− pxp−1F(z,x)

x2p

=
f (z,x)x− pF(z,x)

xp+1

≥− β0

xp−1 (see hypothesis H1(iii)),

⇒ F(z,x)
xp − F(z,v)

vp ≥ β0

p
[

1
xp −

1
vp ] for a.a z ∈Ω, all x≥ v > 0. (3.2)

On account of hypothesis H1(ii), we have

limsup
x→+∞

pF(z,x)
xp ≤ λ̂

a1
1 (p) uniformly for a.a z ∈Ω. (3.3)

If (3.2), we let x→+∞ and use (3.3) to find

λ̂
a1
1 (p)

p
− F(z,v)

vp ≥−β0

p
1
vp for a.a z ∈Ω, all v > 0

⇒−β0 ≤ λ̂
a1
1 (p)vp− pF(z,v) for a.a z ∈Ω, all v > 0. (3.4)

Suppose that the Claim is not true. We can find {un}n∈N ⊆W 1,p
0 (Ω) such that

‖un‖→ ∞ and ψλ (un)≤M for all n ∈ N, some M > 0. (3.5)

On account of (3.1), (3.4), and (3.5), we may assume un ≥ 0 for all n∈N. We set yn =
un
‖un‖ , n∈

N. Then ‖yn‖= 1, yn ≥ 0 for all n ∈ N and so we may assume that

yn
w→ y in W 1,p

0 (Ω), yn→ y in Lp(Ω), y≥ 0.

From (3.5), we have

1
p

ρa1,p(Dyn)+
1
q

1
‖un‖|p−q ρa2,q(Dyn)−

∫
Ω

Gλ (z,un)

‖un‖p dz≤ M
‖u‖p for all n ∈ N. (3.6)

Note that∫
Ω

Gλ (z,un)

‖un‖p dz =
∫
{un≤ūµ}

λ

‖un‖p ū−η
µ un dz+

∫
{ūµ<un}

λ

(1−η)‖un‖p [u
1−η
n − ū1−η

µ ]dz

+
∫
{ūµ<un}

λ

‖un‖p ū1−η
µ dz−

∫
Ω

F(z,un)

‖un‖p dz for all n ∈ N. (3.7)

Observe that

|
∫
{un≤ūµ}

λ

‖un‖p ū−η
µ un dz| ≤ λ

‖un‖p

∫
Ω

ū1−η
µ dz≤ λc1

‖un‖p

for some c1 > 0, all n ∈ N (recall ūµ ∈ intC+),

⇒
∫
{un≤ūµ}

λ

‖un‖p ū−η
µ un dz→ 0 as n→ ∞ (see (3.5)). (3.8)
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We also have

|
∫
{ūµ<un}

λ

(1−η)‖un‖p [u
1−η
n − ū1−η

µ ]dz| ≤ λc2

(1−η)‖un‖p for some c2 > 0, all n ∈ N

(using Hewitt-Stromberg [8, Theorem 13.17]),

⇒
∫
{ūµ<un}

λ

(1−η)‖un‖p [u
1−η
n − ū1−η

µ ]dz→ 0 as n→ ∞. (3.9)

Moreover, from (3.5) and [8, p.196], we have

λ

‖un‖p

∫
{ūµ<un}

ū1−η
µ dz→ 0 as n→ ∞. (3.10)

Finally, on account of hypothesis H1(ii), we have∫
Ω

F(z,un)

‖un‖p dz→
∫

Ω

1
p

θ̂(z)yp dz as n→ ∞ (3.11)

with θ̂ ∈ L∞(Ω), θ(z)≤ λ̂
a1
1 (p) for a.a z ∈Ω

(see Aizicovici-Papageorgiou-Staicu [2, Proposition 16]).

If we return to (3.6), pass to the limit as n→ ∞ and use (3.5) and (3.7)−(3.11) and the fact that
ρa1,p(·) is sequentially weakly lower semicontinuous, we obtain

ρa1,p(Dy)≤
∫

Ω

θ̂(z)yp dz≤ λ̂
a
1 (p)‖y‖p

p (see (2.2))

⇒y = 0 or y = ξ û1(p) with ξ > 0.

If y = 0, then

ρa1,p(Dyn)→ 0 as n→ ∞⇒ yn→ 0 in W 1,p
0 (Ω) as n→ ∞ (see hypotheses H0).

This contradicts the fact that ‖yn‖= 1 for all n ∈ N. If y = ξ û1(p) with ξ > 0, then y ∈ intC+.
Thus

un(z)→+∞ for a.a z ∈Ω. (3.12)

It follows that∫
Ω

[λ̂ a1
1 (p)up

n − pF(z,un)]dz+
1
q

ρa2,q(Dun)

≤
∫
{un≤ūµ}

λ ū−η
µ un dz+

∫
{ūµ<un}

λ

1−η
[u1−η

n − ū1−η
µ ]dz+

∫
{ūµ<un}

λ ū1−η
µ dz+M

(see (3.5) and (3.1))

≤ λc3‖un‖1−η
q +M for some c3 > 0, all n ∈ N

⇒1
q

λ̂
a2
1 (q)‖un‖q

q ≤ λc3‖un‖1−η
q + M̂ for some M̂ > 0, all n ∈ N (see (3.4))

⇒{un}n∈N ⊆ Lq(Ω) is bounded. (3.13)

On the other hand, from (3.12) and Fatou’s lemma, we have∫
Ω

uq
n dz→+∞ as n→ ∞. (3.14)
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Comparing (3.13) and (3.14), we have a contradiction. So, ψλ (·) is coercive and this proves the
Claim. Using the Sobolev Embedding Theorem, we see that ψλ (·) is sequentially weakly lower
semicontinuous. Combining this with the Claim and using the Weierstrass-Tonelli theorem, we
infer that there exists uλ ∈W 1,p

0 (Ω) such that

ψλ (uλ ) = inf{ψλ (u) : u ∈W 1,p
0 (Ω)}. (3.15)

On account of hypothesis H1(iii), given ε > 0, we can find δ̂ = δ̂ (ε)> 0 such that

F(z,x)≤ 1
q
[θ(z)+ ε]xq for a.a z ∈Ω, all 0≤ x≤ δ̂ . (3.16)

Recall that ūµ ∈ intC+. Using Hu-Papageorgiou [11, Proposition 2.86], we can find t ∈ (0,1)
small such that

0≤ tû1(q)(s)≤ ūµ(z) for all z ∈Ω. (3.17)

Then

ψλ (tû1(q))≤
t p

p
ρa1,p(Dû1(p))+

tq

q
[ρa2,q(Dû1(q))−

∫
Ω

θ(z)û1(q)q dz− ε‖û1(q)‖q
q]

−λ t
∫

Ω

ū−η
µ û1(q)dz (see (3.16), (3.17), and (3.43)). (3.18)

Using Proposition 2.1, we have

c4‖û(q)‖1,q ≤ ρa2,q(Dû1(q))−
∫

Ω

θ(z)û1(q)q dz for some c4 > 0. (3.19)

Also, from (2.2), we know that

ε‖û1(q)‖q
q ≤

ε

λ̂
a2
1 (q)

ρa2,q(Du)≤ ε‖a2‖∞

λ̂
a2
1 (q)

‖u‖q
1,q. (3.20)

Choosing ε ∈ (0, c4λ̂
a2
1 (q)
‖a2‖∞

), from (3.19) and (3.20), we see that

ρa2,q(Dû1(q))−
∫

Ω

θ(z)û1(q)q dz− ε‖û1(q)‖q
q = c5 > 0. (3.21)

Since ūµ ∈ intC+, we have that ĉd̂ ≤ ūµ for some ĉ > 0 and with d̂(·) = d(·,∂Ω). So, using
Hardy’s inequality (see [11, p.479]) we infer that ū−η

µ û1(q)∈ Lp(Ω). Returning to (3.18), using
(3.21) and recalling that t ∈ (0,1), q< p, we obtain ψλ (tû1(q))≤ c6tq−c7t for some c6,c7 > 0.
Taking t ∈ (0,1) even smaller if necesssary, we have

ψλ (tû1(q))< 0⇒ψλ (uλ )< 0 = ψλ (0) (see (3.15)),

⇒uλ 6= 0.

From (3.15), we have

〈ψ ′
λ
(uλ ),h〉= 0 for all h ∈W 1,p

0 (Ω),

⇒〈V (uλ ),h〉=
∫

Ω

gλ (z,uλ )hdz for all h ∈W 1,p
0 (Ω). (3.22)
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In (3.22), we choose the test function h = (ūµ −uλ )
+ ∈W 1,p

0 (Ω). Then

〈V (uλ ),(ūµ −uλ )
+〉=

∫
Ω

[λ ū−η
µ + f (z,u+

λ
)](ūµ −uλ )

+ dz (see (3.1))

≥
∫

Ω

λ ū−η
µ (ūµ −uλ )

+ dz (hypothesis H1(iii))

≥
∫

Ω

µ ū−η
µ (ūµ −uλ )dz (since u < λ )

=〈V (ūµ),(ūµ −uλ )
+〉 (see Proposiiton 3.1),

⇒〈V (ūµ)−V (uλ ),(ūµ −uλ )
+〉 ≤ 0,

⇒ ūµ ≤ uλ (see Proposition 2.3). (3.23)

From (3.23) and (3.1), it follows that uλ is a positive solution of (pλ ). From Marino-Winkert
[15], we have that uλ ∈ L∞(Ω). Then

|λu−η

λ
+ f (z,uλ )| ≤ λ ū−η

µ + c8 for some c8 > 0 (see (3.23) and hypothesis H1(i))

≤ c9[λ d̂−η +1] for some c9 > 0

(with d̂(z) = d(z,∂Ω) and since ūµ ∈ intC+)

≤ λc10d̂−η for some c10 > 0.

Invoking Giacomoni-Kumar-Sreenadh [5, Theorem 1.7 ], we have that uλ ∈ intC+. Therefore

L=
o
R+= (0,+∞). If û ∈ Sλ , then

〈V (û),(ūµ − û)+〉=
∫

Ω

[λ ū−η
µ + f (z, û)](ūµ −u)+ dz

≥
∫

Ω

µ û−η
µ (ūµ − û)+ dz

=〈V (ūµ),(ūµ −uλ )
+〉

⇒ūµ ≤ uλ .

Then, as we did for uλ , we show that û ∈ intC+. Therefore /0 6= Sλ ⊆ intC+. �

If p = q, we can have the uniqueness of the positive solution. Thus the problem under
consideration is now the following{

−∆a
pu(z) = λu(z)−η + f (z,u(z)) in Ω,

u|∂Ω = 0, 1 < η < 1 < p, λ > 0, u > 0.
(p′

λ
)

The hypotheses on the perturbation f (z,x) are:
H ′1: f : Ω×R→ R is a Carathéodory function such that

(i) for every ρ > 0, there exists âρ ∈ L∞(Ω) such that | f (z,x)| ≤ âρ(z) for a.a z ∈ Ω and all
|x| ≤ ρ;

(ii) for a.a z ∈Ω, x→ f (z,x)
xp−1 is nonincreasing on

o
R+= (0,+∞);

(iii) limx→+∞
f (z,x)
xp−1 ≤ λ̂

a1
1 (p) uniformly for a.a z ∈Ω and

−β0 ≤ f (z,x)x− pF(z,x) for a.a z ∈Ω, all x≥ 0, some β0 > 0;
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(iv) there exist a function θ ∈ L∞(Ω) and δ > 0 such that

θ(z)≤ λ̂
a2
1 (q) for a.a z ∈Ω, θ 6≡ λ̂

a2
1 (q),

limsup
x→0+

f (z,x)
xq−1 ≤ θ(z) uniformly for a.a z ∈Ω,

and
0≤ f (z,x) for a.a z ∈Ω, all 0≤ x≤ δ .

Proposition 3.3. If a ∈C0,1(Ω), 0 < ĉ ≤ a(z) for all z ∈ Ω, and hypotheses H ′1 hold, then, for
every λ > 0, problem (p′

λ
) has a unique positive solution uλ ∈ intC+.

Proof. From Proposition 3.2, we already know that problem (p′
λ
) has a solution uλ ∈ intC+.

Let vλ ∈W 1,p
0 (Ω) be another positive solution of (p′

λ
). Again we have vλ ∈ intC+. On account

of [11, Proposition 2.86], we have
uλ

vλ

∈ L∞(Ω) and
vλ

uλ

∈ L∞(Ω). (3.24)

We introduce the integral functional j : L1(Ω)→ R= R∪{+∞} defined by

j(u) =

{
1
pρa,p(Du1/p) if u≥ 0, u1/p ∈W 1,p

0 (Ω)

+∞ otherwise.

Let dom j = {u∈ L1(Ω) : j(u)<∞} (the effective domain of j(·)). From Diaz-Saa [2], we know
that j(·) is convex. Let h = up

λ
− vp

λ
∈ C1

0(Ω). On account of (3.24), for t ∈ (0,1) small, we
have up

λ
+ th ∈ dom j and vp

λ
+ th ∈ dom j. Exploiting the convexity of j(·), we can compute the

directional derivatives of j(·) at up
λ

and at vp
λ

in the direction h and we have

j′(up
λ
)(h) =

1
p

∫
Ω

−∆a
puλ

up−1
λ

hdz =
1
p

∫
Ω

[
λ

up+η−1 +
f (z,uλ )

up−1
λ

]hdz

and

j′(vp
λ
)(h)=

1
p

∫
Ω

−∆a
pvλ

vp−1
λ

hdz=
1
p

∫
Ω

[
λ

vp+η−1 +
f (z,vλ )

vp−1
λ

]hdz (see also Diaz-Saa [2, Lemma 2]).

The convexity of j(·) implies the monotonicity of its directional derivative. Thus

0≤
∫

Ω

[λ (
1

up+η−1 −
1

vp+η−1 )+(
f (z,uλ )

up−1
λ

− f (z,vλ )

vp−1
λ

)](up
λ
− vp

λ
)dz≤ 0

(see hypothesis H ′1(iv)),

⇒uλ = vλ .

Therefore, for every λ > 0, problem (p′
λ
) has a unique positive solution. �

Now we turn our attention to the case that the quotient function x→ f (z,x)
xp−1 asymptotically as

x→ +∞, stays above the principal eigenvalue λ̂
a1
1 (p) > 0. As we can see, now the situation

changes and the set at admissible parameters L is a bounded interval in
o
R+= (0,+∞).

The hypotheses on the perturbation f (z,x) are the following:
H2: f : Ω×R→ R is Carathéodory function such that
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(i) for every ρ > 0, there exists âρ ∈ L∞(Ω) such that | f (z,x)| ≤ âρ(z) for a.a z ∈ Ω, all
0≤ x≤ ρ;

(ii) there exist a function η0 ∈ L∞(Ω) and τ ∈ (q, p) such that

λ̂
a1
1 (p)≤ liminf

x→+∞

f (z,x)
xp−1 ≤ limsup

x→+∞

f (z,x)
xp−1 ≤ η0(z) uniformly for a.a z ∈Ω,

0 < β0 ≤ liminf
x→+∞

pF(z,x)− f (z,x)x
xτ

uniformly for a.a z ∈Ω;

(iii) there exist a function θ ∈ L∞(Ω) and δ > 0 such that

θ(z)≤ λ̂
a1
1 (p) for a.a z ∈Ω, θ 6≡ λ̂

a1
1 (p),

limsup
x→0+

f (z,x)
xq−1 ≤ θ(z) uniformly for a.a z ∈Ω,

0≤ f (z,x) for a.a z ∈Ω, all 0≤ x≤ δ ;

(iv) for every ρ > 0, there exists ξ̂ρ > 0 such that, for a.a z ∈ Ω, x→ f (z,x)+ ξ̂ρxp−1 is
nondecreasing on [0,ρ].

Remark 3.2. As before, we have f (z,0) = 0 for a.a z ∈Ω (see hypothesis H2(iii)). Without any
loss of generality, we may assume that f (z,x) = 0 for a.a z ∈Ω and all x≤ 0.

Proposition 3.4. If hypotheses H0,H2 hold, then L 6= /0 and, for every λ ∈ L, /0 6= Sλ ⊆ intC+.

Proof. Using Proposition 3.1, we can find µ ∈ (0,λ ) small such that 0≤ ūµ(z)≤ δ for all z∈Ω.
We introduce the Carathéodory function gλ (z,x) defined by

gλ (z,x) =

{
λ ūµ(z)−η + f (z,x+) if x≤ ūµ(z)
λx−η + f (z,x) if ūµ(z)< x.

(3.25)

We set Gλ (z,x) =
∫ x

0 gλ (z,s)ds and consider the C1-functional ψλ : W 1,p
0 (Ω)→ R defined by

ψλ (u) =
1
p

ρa1,ρ(Du)+
1
q

ρa2,q(Du)−
∫

Ω

Gλ (z,u)dz for all u ∈W 1,p
0 (Ω).

Claim 1: For every λ > 0, ψλ (·) satisfies the C-condition.
We consider a sequence {un}n∈N ⊆W 1,p

0 (Ω) such that

|ψλ (un)| ≤ c11 for some c11 > 0, all n ∈ N, (3.26)

(1+‖un‖)ψ ′λ (un)→ 0 in W 1,p′
0 (Ω) as n→ ∞. (3.27)

From (3.27), we have

|〈V (un),h〉−
∫

Ω

gλ (z,un)hdz| ≤ εn‖h‖
1+‖un‖

for all h ∈W 1,p
0 (Ω), with εn→ 0+. (3.28)

In (3.28), we choose the test function h =−u−n ∈W 1,p
0 (Ω) and then

ĉ‖Du−n ‖p
p ≤ εn for all n ∈ N⇒ u−n → 0 in W 1,p

0 (Ω) as n→ ∞. (3.29)

We show that {u+n }n∈N ⊆W 1,p
0 (Ω) is bounded. If this is not true, then by passing to a subse-

quence if necessary, we may assume that

‖u+n ‖→ ∞ as n→ ∞. (3.30)
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Setting yn =
u+n
‖u+n ‖

for all n ∈ N, one sees that ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. Thus we may

assume that yn
w→ y in W 1,p

0 (Ω) and yn→ y in Lp(Ω), y≥ 0. From (3.27) and (3.29), we have

|〈V (u+n ),h〉−
∫

Ω

gλ (z,un)hdz| ≤ ε
′
n‖h‖ for all h ∈W 1,p

0 (Ω), with ε
′
n→ 0+; (3.31)

⇒〈Aa1
p (yn),h〉+

1
‖u+n ‖p−q 〈A

a2
q (yn),h〉 ≤

ε ′n
‖u+n ‖p‖h‖+

∫
Ω

gλ (z,un)

‖u+n ‖p−1 hdz (3.32)

for all h ∈W 1,p
0 (Ω), all n ∈ N.

Using (3.25), we have

|
∫

Ω

gλ (z,un)

‖u+n ‖p−1 hdz|=
∫
{u+n ≤ūµ}

λ

‖u+n ‖p−1 ū−η
µ hdz+

∫
{ūµ<u+n }

λ

‖u+n ‖p−1 (u
+
n )
−ηhdz

+
∫

Ω

f (z,u+n )
‖u+n ‖p−1 hdz for all h ∈W 1,p

0 (Ω), all n ∈ N.

Note that

|
∫
{u+n ≤ūµ}

λ

‖u+n ‖p−1 ū−η
µ hdz|

≤ λ

‖u+n ‖p−1

∫
Ω

ū1−η
µ

|h|
ūµ

dz

≤ λc12

‖u+n ‖p−1

∫
Ω

|h|
d̂

dz for some c12 > 0

(recall that since ūµ ∈ intC+, we have c0d̂ ≤ ūµ for some c0 > 0)

≤ λc13

‖u+n ‖p−1‖Dh‖p for some c13 > 0, all n ∈ N

(using Hardy’s inequality, see [11, p.479]),

⇒
∫
{u+n ≤ūµ}

λ

‖u+n ‖p−1 ū−η
µ hdz→ 0 as n→ ∞ (see (3.30)). (3.33)

Similarly, we have ∫
{ūµ<u+n }

λ

‖u+n ‖p−1 (u
+
n )
−ηhdz→ 0 as n→ ∞. (3.34)

Moreover, using hypothesis H2(iii), we have

f (·,u+n )
‖u+n ‖p−1

w−→ η̂(·)y(·)p−1 in Lp′(Ω) as n→ ∞ with λ̂
a1
1 (p)≤ η̂(z)≤ η0(z) for a.a z ∈Ω

(3.35)
(see Aizicovici-Papageorgiou-Staicu [1, Proposition 16]). Using (3.35), we have∫

Ω

f (z,u+n )
‖u+n ‖p−1 hdz→

∫
Ω

η̂(z)yp−1hdz for all h ∈W 1,p
0 (Ω). (3.36)

From (3.33), (3.33), (3.34), and (3.36), we obtain∫
Ω

gλ (z,u+n )
‖u+n ‖p−1 hdz→

∫
Ω

η̂(z)yp−1 dz for all h ∈W 1,p
0 (Ω).



NONHOMOGENEOUS, NONAUTONOMOUS RESONANT SINGULAR EQUATIONS 123

Using (3.32) with h = yn− y ∈W 1,p
0 (Ω) and (3.30), we see that

lim
n→∞
〈Aa1

p (yn),yn− y〉= 0,

⇒yn→ y in W 1,p
0 (Ω), ‖y‖= 1, y≥ 0 (see Proposition 2.3). (3.37)

Taking the limit as n→ ∞ in (3.32), we obtain

〈Aa1
p (y),h〉=

∫
Ω

η̂(z)yp−1hdz for all h ∈W 1,p
0 (Ω),

⇒−∆
a1
p y(z) = η̂(z)y(z)p−1 in Ω, y|∂Ω = 0. (3.38)

If η̂ 6≡ λ̂
a1
1 (p) (see (3.35)), then we see from (3.35) and Proposition 2.2 that

λ̃
a1
1 (p, η̂)< λ̃

a1
1 (p, λ̂ a1

1 (p)) = 1,⇒ y must be nodal (see (3.38)),

which contradicts the fact that y≥ 0 (see (3.37)).
Next, one supposes that η̂(z) = ˆλ

a1
1 (p) for a.a z ∈Ω (see (3.35)). From (3.38), it follows that

y = θ û1(p) for some θ > 0 (see (3.37))⇒ y ∈ intC+.

We infer that
u+n (z)→+∞ for a.a z ∈Ω, as n→ ∞. (3.39)

From (3.26) and (3.29), we see that

−ρa1,p(Du+n )−
p
q

ρa2,q(Du+n )+
∫

Ω

pGλ (z,un)dz≤ c14 for some c14 > 0 and all n∈N. (3.40)

In (3.31), we use the test function h = u+n ∈W 1,p
0 (Ω) and obtain

ρa1,p(Du+n )+ρa2,q(Du+n )−
∫

Ω

gλ (z,un)u+n dz≤ ε
′
n‖u+n ‖ for all n ∈ N. (3.41)

Adding (3.40) and (3.41), we obtain∫
Ω

[pGλ (z,un)−gλ (z,un)u+n ]dz≤ c14 + ε
′
n‖u+n ‖+(

p
q
−1)ρa2,q(Du+n ),

⇒
∫

Ω

[pF(z,u+n )− f (z,u+n )u
+
n ]dz≤ c15(1+‖u+n ‖q)+ ε

′
n‖u+n ‖

for some c15 > 0, all n ∈ N (see (3.25)),

⇒
∫

Ω

pF(z,u+n )− f (z,u+n )u
+
n

‖u+n ‖τ
dz≤ c15[

1
‖u+n ‖τ

+
1

‖u+n ‖τ−q ]+
ε ′n

‖u+n ‖τ−1.
(3.42)

On account of hypothesis H2(ii), (3.39), and y = θ û1(p), we have by Fatou’s lemma that

0 < liminf
∫

Ω

pF(z,u+n )− f (z,u+n )u
+
n

‖u+n ‖τ
dz,

a contradiction (see (3.30)). Therefore {u+n }n∈N ⊆W 1,p
0 (Ω) is bounded. From (3.29), it follows

that {un}n∈N ⊆W 1,p
0 (Ω) is bounded. So, we may assume that un

w→ u in W 1,p
0 (Ω), un→ u in

Lp(Ω). In (3.28), we use the test function h = un−u ∈W 1,p
0 (Ω), pass to the limit as n→∞ and

use (3.25). Then

lim
n→∞
〈V (un),un−u〉= 0 ⇒ un→ u in W 1,p

0 (Ω) as n→ ∞.
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This shows that ψλ (·) satisfies the C-condition. This proves Claim 1.
Claim 2: There exists λ0 > 0 such that, for all λ ∈ (0,λ0), there exists ρλ > 0 such that ψλ (u)≥
mλ > 0 for all ‖u‖= ρλ .

Let r > p. For given ε > 0, we can find c16 = c16(ε,r)> o such that

f (z,x)≤ (θ(z)+ ε)xp−1 + c16xr−1 for a.a z ∈Ω, all x≥ 0,

⇒F(z,x)≤ 1
p
(θ(z)+ ε)xp +

c16

r
xr for a.a z ∈Ω, all x≥ 0, (3.43)

For u ∈W 1,p
0 (Ω), we have

ψλ (u)≥
1
p

ρa1,p(Du)+
1
q
[ρa2,q(Du)−

∫
Ω

θ(z)|u|q dz− ε‖u‖q
q]− c17‖u‖r

−
∫
{u≤ūµ}

λ ū−η
µ udz−

∫
{ūµ<u}

λ

1−η
(u1−η − ū1−η

µ )dz−
∫
{ūµ<u}

λ ū1−η
µ dz.

Using Proposition 2.1 and choosing ε ∈ (0,1) small, we have ρa2,q(Du)−
∫

Ω
θ(z)|u|q dz−

ε‖u‖q
q ≥ 0. In view of Hewitt-Stromberg [8, Theorem 13.17], we have

ψλ (u)≥
ĉ
p
‖u‖p− c18(λ‖u‖1−η +‖u‖r) for some c18 > 0

= [
ĉ
p
− c18(λ‖u‖1−(p+η)+‖u‖r−p)]‖u‖p. (3.44)

Let γλ (t) = λ t1−(p+η)+ tr−p for all t > 0. Evidently, γλ (t)→+∞ as t→ 0+ and t→+∞. So,
we can find t0 > 0 such that γλ (t0) = inft>0 γλ (t), which implies

γ
′
λ
(t0) = 0⇒(r− p)tr−p−1

0 = λ (p+η−1)t−(p+η)
0 ,

⇒t0 = t0(λ ) = (
λ (p+η−1)

r− p
)

1
r+η−1 .

Note that

γλ (t0) = λ (
r− p

λ (p+η−1)
)

p+η−1
r+η−1 +(

λ (p+η−1)
r− p

)
r−p

r+η−1 .

Since p < r, we see that γλ (t0)→ 0+ as λ → 0+. So, we can find λ0 > 0 such that

0 < γλ (t0)<
ĉ

pc18
for all 0 < λ < λ0.

From (3.44), it follows that ψλ (u)≥ mλ > 0 for all ‖u‖= ρλ = t0(λ ) and all 0 < λ < λ0. This
proves Claim 2.
Claim 3: ψλ (tû1(p))→−∞ as t→+∞.

On account of hypothesis H2(ii), given β1 ∈ (0,β0), we can find M = M(β1)> 0 such that

β1xτ ≤ pF(z,x)− f (z,x)x for a.a z ∈Ω, all x≥M. (3.45)

Reasoning as in the “Claim” in the proof of Proposition 3.2 and using this time (3.45), we obtain

F(z,x)
xp − F(z,v)

vp ≤ β1

p− τ
[

1
xp−τ

− 1
vp−τ

] for a.a z ∈Ω, all x > v≥M.
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Passing to the limit as x→+∞ and using hypothesis H2(ii), we have

λ̂
a1
1 (p)

p
− F(z,v)

vp ≤− β1

p− τ

1
vp−τ

for a.a z ∈Ω, all v≥M

(recall that τ < p),

⇒λ̂
a1
1 (p)vp− pF(z,v)≤− β1 p

p− τ
vτ for a.a z ∈Ω, all v≥M. (3.46)

Then, for t > 0 and û1 = û1(p) ∈ intC+,

ψλ (tû1)≤
1
p

∫
Ω

[λ̂ a1
1 (p)(tû1)

p− pF(z, tû1)]dz+
t p

q
ρa2,q(Dû1)+ c19

for some c19 > 0 (see (3.16))

≤− β1tτ

p− τ

∫
{tû1≥M}

ûτ
1 dz+

tq

q
ρa2,q(Dû1)+ c20 for some c20 > 0. (3.47)

By | · |N , we denote the Lebesgue measure on RN . In view of û1 ∈ intC+, we have |{tû1 ≥
M}|N → |Ω|N as t→+∞. If, in (3.47), we let t→+∞, then ψλ (tû1)→−∞ as t→+∞, due to
η < τ , This proves Claim 3.

Claims 1, 2, and 3 permit the use of the Mountain Pass Theorem. So, we can find uλ ∈
W 1,p

0 (Ω) such that uλ ∈ Kψλ
and 0 < mλ ≤ ψλ (uλ ) for all 0 < λ < λ0, which implies that

〈V (uλ ),h〉=
∫

Ω

gλ (z,uλ )hdz for all h ∈W 1,p
0 (Ω). (3.48)

In (3.48), if we use the test function h = (ūµ −uλ )
+ ∈W 1,p

0 (Ω), then

〈V (uλ ),(ūµ −uλ )
+〉

=
∫

Ω

[λ ū−η
µ + f (z,u+

λ
)](ūµ −uλ )

+ dz (see (3.25))

≥
∫

Ω

λ ū−η
µ (ūµ −uλ )

+ dz (since on {uλ < ūµ} we have f (z,u+
λ
)≥ 0)

=〈V (ūµ),(ūµ −uλ )
+〉 (see Proposition 3.1)

⇒ūµ ≤ uλ .

From (3.25) and (3.48), it follows that uλ ∈ Sλ and s ∈ (0,λ0)⊆L 6= /0. Letting û ∈ Sλ , one has

〈V (û),(ūµ − û)+〉

=
∫

Ω

[λ ū−η
µ + f (z, û)](ūµ − û)+ dz (see (3.25))

≥
∫

Ω

µ ū−η
µ (ūµ − û)+ dz (as before on {û < ūµ}, f (z, û)≥ 0 and µ < λ )

=〈V (ūµ),(ūµ − û)+〉 (see Proposition 3.1),

⇒ūµ ≤ û. (3.49)
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We see that û ∈ L∞(Ω) (see Marino-Winkert [15]). Therefore

|λ û−η + f (z, û)|

≤λ ū−η
µ + c21 for some c21 > 0 (see hypothesis H2(i))

≤c22[λ d̂−η +1] for some c22 > 0 (since ūµ ∈ intC+, we have c0d̂ ≤ ūµ , c0 > 0)

≤λc23d̂−η for some c23 > 0.

Invoking Giacomoni-Kumar-Sreenadh [5, Theorem 1.7], we have that û ∈ C+ \ {0}. Let ρ =

‖û‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H2(iv). Then

−∆
a1
p û−∆

a2
q û+ ξ̂ρ ûp−1−λ û−η = f (z, û)+ ξ̂ρ ûp−1 ≥ 0 in Ω,

⇒û ∈ intC+ (see Papageorgiou-Rădulescu-Zhang [19, Proposition A2]).

We conclude that if λ ∈ L, then /0 6= Sλ ⊆ intC+. �

Next, we show that L is an interval.

Proposition 3.5. If hypotheses H0 and H2 hold, λ ∈ L, and 0 < σ < λ , then σ ∈ L.

Proof. Since λ ∈ L, we can find uλ ∈ Sλ ⊆ intC+. We choose µ ∈ (0,σ) small such that
0 ≤ ūµ(z) ≤ δ for all z ∈ Ω with δ > 0 as in hypothesis H2(iii) (see Proposition 3.1). In view
of Proposition 3.4, one sees that ūµ ≤ uλ . So, we can define the Carathéodory function kσ (z,x)
by setting

kσ (z,x) =


σ ūµ(z)−η + f (z, ūµ(z)) if x < ūµ(z)
σx−η + f (z,x) if ūµ(z)≤ x≤ uλ (z)
σuλ (z)−η + f (z,uλ (z)) if uλ (z)< x.

(3.50)

We set Kσ (z,x) =
∫ x

0 kσ (z,s)ds and consider the C1-functional lσ : W 1,p
0 (Ω)→ R defined by

lσ (u) =
1
p

ρa1,p(Du)+
1
q

ρa2,q(Du)−
∫

Ω

Kσ (z,u)dz for all u ∈W 1,p
0 (Ω)

(see Papageorgiou-Smyrlis [20, Proposition 3]).

From (3.50), it is clear that lσ (·) is coercive. Also, using the Sobolev embedding theorem, we
see that lσ (·) is sequentially weakly lower semicontinuous. By the Weierstrass-Tonelli theorem,
we can find uσ ∈W 1,p

0 (Ω) such that

lσ (uσ ) = inf{lσ (u) : u ∈W 1,p
0 (Ω)}⇒〈l′σ (uσ ),h〉= 0 for all h ∈W 1,p

0 (Ω),

⇒〈V (uσ ),h〉=
∫

Ω

kσ (z,uσ )hdz for all h ∈W 1,p
0 (Ω).

(3.51)

In (3.51), we use the test function h = (uσ −uλ )
+ ∈W 1,p

0 (Ω). Then

〈V (uσ ),(uσ −uλ )
+〉=

∫
Ω

[σu−η

λ
+ f (z,uλ )](uσ −uλ )

+ dz (see (3.50))

≤
∫

Ω

[λu−η

λ
+ f (z,uλ )](uσ −uλ )

+ dz (see σ < λ )

=〈V (uλ ),(uσ −uλ )
+〉 (since uλ ∈ Sλ )

⇒uσ ≤ uλ (see Proposition 2.3) .
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Next, in (3.51), we choose the test function h = (ūµ −uσ )
+ ∈W 1,p

0 (Ω). Then

〈V (uσ ),(uµ −uσ )
+〉=

∫
Ω

[σ ū−η
µ + f (z, ūµ)](ūµ −uσ )

+ dz

≥
∫

Ω

µ ū−η
µ (ūµ −uσ )

+ dz (since µ < σ and f (z, ūµ)≥ 0)

=〈V (ūµ),(ūµ −uσ )
+〉 (see Proposition 3.1)

⇒ūµ ≤ uσ (see Proposition 2.3).

It follows from (3.50) and (3.51) that

uσ ∈ [ūµ ,uλ ]⇒ uσ ∈ Sσ ⊆ intC+⇒ σ ∈ L.

�

Corollary 3.1. If hypotheses H0,H2 hold, λ ∈L, uλ ∈ Sλ ⊆ intC+, and 0 < σ < λ , then σ ∈L

and there exists uσ ∈ Sσ ⊆ intC+ such that uσ ≤ uλ .

We can improve this monotonicity property as follows.

Proposition 3.6. If hypotheses H0,H2 hold, λ ∈ L, uλ ∈ Sλ ⊆ intC+, and 0 < σ < λ , then
σ ∈ L and there exists uσ ∈ Sσ ⊆ intC+ such that uλ −uσ ∈ intC+.

Proof. From Corollary 3.1, we know that σ ∈ L and we can find uσ ∈ Sσ ⊆ intC+ such that

ūµ ≤ uσ ≤ uλ (with u ∈ (0,σ), see the proof of Proposition 3.4). (3.52)

Let ρ = ‖uλ‖∞ and ξ̂ρ > 0 be as postulated by hypothesis H2(iv). Then

−∆
a1
p uσ −∆

a2
q uσ + ξ̂ρup−1

σ −λu−η
σ

= f (z,uσ )+ ξ̂ρup−1
σ − (λ −σ)u−η

σ

≤ f (z,uλ )+ ξ̂ρup−1
λ

(see (3.52), hypothesis H2(iv) and recall σ < λ )

=−∆
a1
p uλ −∆

a2
q uλ + ξ̂ρup−1

λ
−λu−η

λ
in Ω. (3.53)

Since uσ ∈ intC+, we see that 0 ≺ (λ −σ)u−η
σ . From (3.53) and Papageorgiou-Rădulescu-

Repovš [18, Proposition 7 ], we conclude that uλ −uσ ∈ intC+. �

Let λ ∗ = supL.

Proposition 3.7. If hypotheses H0,H2 hold, then λ ∗ < ∞.

Proof. Hypotheses H2 imply that, for given c ∈ (0, λ̂ a1
1 (p)), we can find λ̂ = λ̂ (c)> 0 such that

cxp−1 ≤ λ̂x−η + f (z,x) for a.a z ∈Ω, all x≥ 0. (3.54)

Let λ > λ̂ and λ ∈ L. Then we can find uλ ∈ Sλ ⊆ intC+. Let Ω0 ⊆ Ω be open with C2-
boundary ∂Ω0 and Ω0 ⊆Ω. Set mλ = min

Ω0
uλ . Since uλ ∈ intC+, we have mλ > 0. For ε > 0,

we set mε

λ
= m+ ε . Let ρ = ‖uλ‖∞ and consider ξ̂ρ > 0 as postulated by hypothesis H2(iv).
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Then

−∆
a1
p mε

λ
−∆

a2
q mε

λ
+ ξ̂ρ(mε

λ
)p−1−λ (mε

λ
)−η

≤ξ̂ρmp−1
λ

+χ(ε)−λm−η

λ
with χ(ε)→ 0+ as ε → 0+

=[ξ̂ρ + c]mp−1
λ

+χ(ε)− λ̂m−η

λ
− (λ − λ̂ )m−η

λ

≤ f (z,mλ )+ ξ̂ρmp−1
λ
− (λ − λ̂ )m−η

λ
+χ(ε) (see (3.54))

≤ f (z,uλ )+ ξ̂ρup−1
λ

for ε > 0 small (see hypothesis H2(iv) and recall λ̂ < λ )

=−∆
a1
p uλ −∆

a2
q uλ + ξ̂ρup−1

λ
−λu−η

λ
in Ω0. (3.55)

Note that, for ε > 0 small, 0 < c∗ = λ−λ̂

mλ η
− χ(ε). From (3.55) and Papageorgiou-Rădulescu-

Repovš [18, Proposition 6] (see also Papageorgiou-Rădulescu [17, Theorem 7(b)]), we have
mε

λ
= mλ + ε ≤ uλ (z) for all z ∈ Ω0 and all ε > 0 small, which is a contradiction. This means

that λ ∗ ≤ λ̂ < ∞. �

Proposition 3.8. If hypotheses H0 and H2 hold and 0 < λ < λ ∗, then problem (pλ ) has at least
two positive solutions u0, û ∈ intC+.

Proof. Let 0 < σ < λ < γ < λ ∗. On account of Proposition 3.6, we can find uγ ∈ Sγ ⊆ intC+,
u0 ∈ Sλ ⊆ intC+, and uσ ∈ Sσ ⊆ intC+ such that

uγ −u0 ∈ intC+ and u0−uσ ∈ intC+⇒ u0 ∈ intC1
0(Ω)[uσ ,uγ ]. (3.56)

We introduce the Carathéodory function ŵλ (z,x) defined by

ŵλ (z,x) =


λuσ (z)−η + f (z,uσ (z)) if x < uσ (z),
λx−η + f (z,x) if uσ (z)≤ x≤ uγ(z),
λuγ(z)−η + f (z,uγ(z)) if uγ(z)< x.

(3.57)

We set Ŵλ (z,x) =
∫ x

0 ŵλ (z,s)ds and consider the C1-functional ϕ̂λ : W 1,p
0 (Ω)→ R defined by

ϕ̂λ (u) =
1
p

ρa1,p(Du)+
1
q

ρa2,q(Du)−
∫

Ω

Ŵλ (z,u)dz for all u ∈W 1−p
0 (Ω).

Let wλ (z,x) be the Carathéodory function defined by

wλ (z,x) =

{
λuσ (z)−η + f (z,uσ (z)) if x≤ uσ (z),
λx−η + f (z,x) if uσ (z)< x.

(3.58)

We set Wλ (z,x) =
∫ x

0 wλ (z,s)ds and consider the C1-functional ϕλ : W 1,p
0 (Ω)→ R defined by

ϕλ (u) =
1
p

ρa1,p(Du)+
1
q

ρa2,q(Du)−
∫

Ω

Wλ (z,u)dz for all u ∈W 1−p
0 (Ω).

Consider the critical sets

Kϕ̂λ
= {u ∈W 1,p

0 (Ω) : ϕ̂
′
λ
(u) = 0} and Kϕλ

= {u ∈W 1,p
0 (Ω) : ϕ

′
λ
(u) = 0}.

Using (3.57) and (3.58), we can easily show that

Kϕ̂λ
⊆ [uσ ,uγ ]∩ intC+ and Kϕλ

⊆ [uσ )∩ intC+. (3.59)
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Moreover, from (3.57), it follows that ϕ̂λ (·) is coercive. Also it is sequentially weakly lower
semicontinuous. So, we can find ū0 ∈W 1,p

0 (Ω) such that

ϕ̂λ (ū0) = inf{ϕ̂λ (u) : u ∈W 1,p
0 (Ω)}. (3.60)

Then ū0 ∈ Kϕ̂λ
. From (3.59) and (3.57), we may assume that ū0 = u0, or otherwise we already

have a second positive smooth solution and so we are done. From (3.56) and (3.57), we see that
ϕ̂λ |[uσ ,uγ ] = ϕλ |[uz,uγ ], which together with (3.60), and (3.56) follows that

u0 is a local C1
0(Ω̄)-minimizer of ϕλ (·),

⇒u0 is a local W 1,p
0 (Ω)-minimizer of ϕλ (·) (see [19, Proposition A3]).

From (3.59), we may assume that Kϕλ
is finite (otherwise, on account of (3.59) and (3.58),

we already have an infinite number of positive smooth solutions. Thus it is done). Then Hu-
Papageorgiou [11, Proposition 3.132] implies that there exists ρ ∈ (0,1) small such that

ϕλ (u0)< inf{ϕλ (u) : ‖u−u0‖= ρ}= m∗
λ
. (3.61)

As in the Claims 1 and 3 of Proposition 3.4, we can find that

ϕλ (·) satisfies the C-condition and ϕλ (tû1(p))→−∞ as t→+∞. (3.62)

From (3.61) and the Mountain Pass Theorem, we can find û ∈W 1,p
0 (Ω) such that û ∈ Kϕλ

and
ϕλ (u0) < m∗

λ
≤ ϕλ (û). In view of (3.59) and (3.58), we conclude that û ∈ Sλ ⊆ intC+ and

û 6= u0. �

Note that (0,λ ∗) ⊆ L ⊆ (0,λ ∗]. For λ ∈ (0,λ ∗), we have multiplicity of the positive solu-
tions. We have to decide about the admissibility of the critical parameter value λ ∗. We can show
the admissibility of λ ∗ > 0 only under nonuniform nonresonance as x→ +∞. When we have
uniform resonance with respect to λ̂

a1
1 (p)> 0 (this is the case of hypothesis H2(ii)), we do not

know if we have λ ∗ ∈ L. This is an interesting open problem. The more restrictive hypotheses
on the perturbation f (z,x) are the following.

H ′2: f : Ω×R→ R is a Carathéodory function such that hypotheses H ′2(i), (iii), and (iv) are the
same as the corresponding hypotheses H2(i), (iii), (iv), and

(ii) there exist functions η̂0,η ∈ L∞(Ω) such that

λ̂
a1
1 (p)≤ η̂0(z) for a.a z ∈Ω, η̂0 6≡ λ̂

a1
1 (p)

η̂0(z)≤ liminf
x→+∞

f (z,x)
xp−1 ≤ limsup

x→+∞

f (z,x)
xp−1 ≤ η0(z) uniformly for a.a z ∈Ω.

Proposition 3.9. If hypotheses H0 and H ′2 hold, then λ ∗ ∈ L.

Proof. Let λn ∈ L, n ∈ N such that λn ↑ λ ∗ as n→ ∞. We choose µ ∈ (0,λ1) small such that

0≤ ūµ(z)≤ δ for all z ∈Ω (see Proposition 3.1).

Since λn ∈ L, we can find un ∈ Sλn ⊆ intC+, n ∈ N. Then, for all n ∈ N, ūµ ≤ un. We show
that {un}n∈N ⊆W 1,p

0 (Ω) is bounded. We argue indirectly. Suppose that {un}n∈N ⊆W 1,p
0 (Ω)

is not bounded. We may assume ‖un‖ → ∞ as n → ∞. Setting yn = un
‖un‖ , n ∈ N, one has
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‖yn‖= 1, yn ≥ 0 for all n ∈N. We may assume that yn
w→ y in W 1,p

0 (Ω) and yn→ y in Lp(Ω) as
n→ ∞. Note that

〈V (un),h〉=
∫

Ω

[λnu−η
n + f (z,un)]hdz for all h ∈W 1,p

0 (Ω), all n ∈ N. (3.63)

⇒ 〈Aa1
p (yn),h〉+

1
‖un‖p−q 〈A

a2
q (yn),h〉=

λn

‖un‖p−1

∫
Ω

u−η
n hdz+

∫
Ω

f (z,un)

‖un‖p−1 hdz (3.64)

for all h ∈W 1,p
0 (Ω), all n ∈ N.

In (3.64), we choose the test function h = yn− y ∈W 1,p
0 (Ω) and pass to the limit as n→ ∞.

Then

lim
n→∞
〈Aa1

p (yn),yn− y〉= 0⇒ yn→ y in W 1,p
0 (Ω), ‖y‖= 1, y≥ 0 (see Proposition 2.3).

(3.65)

If we pass to the limit as n→ ∞ in (3.64) and use (3.65), then

〈Aa1
p (y),h〉=

∫
Ω

η̂(z)yp−1hdz

for all h ∈W 1,p
0 (Ω) and with η̂0(z)≤ η̂(z)≤ η0(z) for a.a z ∈Ω (see (3.35)),

⇒−∆
a1
p y(z) = η̂(z)y(z)p−1 in Ω, y|∂Ω = 0. (3.66)

From Proposition 2.2, we see that

λ̃
a1
1 (p, η̂)≤ λ̃

a1
1 (p, η̂0)< λ̃

a1
1 (p, λ̂ a1

1 (p)) = 1.

It follows from (3.66) that y = 0 or y = nodal. Both cases contradict (3.65). Thus {un}n∈N ⊆
W 1,p

0 (Ω) is bounded and we may assume that un
w→ u∗ in W 1,p

0 (Ω) and un → u∗ in Lp(Ω) as
n→ ∞. In (3.63), we choose the test function h = un− u∗ ∈W 1,p

0 (Ω) and pass to the limit as
n→ ∞ to see that limn→∞〈V (un),un−u∗〉= 0, which implies

un→ u∗ in W 1,p
0 (Ω) (see Proposition 2.3) , ūµ ≤ u∗. (3.67)

Note that ūµ ∈ intC+. Thus we can find c24 > 0 such that

c24d̂ ≤ ūµ (recall d̂(z) = d(z,∂Ω) for all z ∈Ω). (3.68)

For all n ∈ N and all h ∈W 1,p
0 (Ω), we have

|h|
uη

n
≤ c25

|h|
ūµ

for some c25 > 0 (recall ūµ ∈ intC+)

≤ c26
|h|
d̂

for some c26 > 0 (see (3.68)).

By Hardy’s inequality, it follows that

{ h
uη

n
}n∈N ⊆ Lp(Ω) is bounded⇒{ h

uη
n
}n∈N is uniformly integrable.

On account of (3.67), we have (at least for a subsequence), that

(
h

uη
n
)(z)→ (

h
(u∗)η

)(z) for a.a z ∈Ω.
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By Vitali’s theorem (see [10, p.91]), we infer that∫
Ω

λn
h

uη
n

dz→
∫

Ω

λ
∗ h
(u∗)η

dz. (3.69)

If, in (3.63), we pass to the limit as n→ ∞ and use (3.55) and (3.69), then

〈V (u∗),h〉=
∫

Ω

[λ ∗(u∗)−η + f (z,u∗)]hdz for all h ∈W 1,p
0 (Ω),

ūµ ≤ u∗⇒ u∗ ∈ Sλ ∗ ⊆ intC+ and so λ
∗ ∈ L.

�

We can state the following existence and multiplicity result for problem (pλ ) when we have
resonance from the right with respect to λ̂

a1
1 (p)> 0.

Theorem 3.1. (1) If hypotheses H0 and H2 hold, then there exists λ ∗ > 0 such that
(a) for all λ ∈ (0,λ ∗), problem (pλ ) has at least two solutions u0, û ∈ intC+, u0 6= û;
(b) for all λ > λ ∗ problem (pλ ) has no solution.

(2) If hypotheses H0 and H ′2 hold, then, for λ = λ ∗, problem (pλ ) has at least one solution (that
is, L= (0,λ ∗]).

Remark 3.3. There is a difference between resonance from the left and from the right of
λ̂

a1
1 (p)> 0. In the first case, the energy functional is coercive and we have the existence for all

λ > 0 but no multiplicity of solutions. In fact, if the equation is driven only by ∆
a1
p , then we can

have the uniqueness of the solution (see Proposition 3.2 and 3.3). In the second case (resonance

from the right), the set of admissible parameters is a bounded interval in
o
R+= (0,+∞) and we

have a bifurcation-type situation (see Theorem 3.1).

4. MINIMAL SOLUTIONS-SOLUTION MULTIFUNCTION

First we show that, for every λ ∈ L, Sλ has a minimal element.

Proposition 4.1. If hypotheses H0 and H2 hold, then
(a) for every λ ∈ L, there exists u∗

λ
∈ Sλ ⊆ intC+ such that u∗

λ
≤ u for all u ∈ Sλ ;

(b) if σ ,λ ∈ L and 0 < σ < λ , then u∗
λ
−u∗σ ∈ intC+;

(c) u∗
λ
→ 0 in C1

0(Ω̄) as λ → 0+.

Proof. (a) From Filippakis-Papageorgiou [3], we see that Sλ is downward directed (that is, if
u1,u2 ∈ Sλ , then there exists u ∈ Sλ such that u≤ u1, u≤ u2). In view of Hu-Papageorgiou [10,
Theorem 5.109], we can find a decreasing sequence {un}n∈N ⊆ Sλ such that infSλ = infn∈N un.
Note that

〈V (un),h〉=
∫

Ω

[λu−η
n + f (z,un)]hdz for all h ∈W 1,p

0 (Ω), all n ∈ N, (4.1)

ūµ ≤ un ≤ u1 for all n ∈ N and for µ ∈ (0,1) small. (4.2)

We test (4.1) with h = un ∈W 1,p
0 (Ω). Using (4.2) and hypothesis H2(i), we obtain

ĉ‖un‖p ≤ c27 for some c27 > 0, all n ∈ N (see hypotheses H0),

⇒{un}n∈N ⊆W 1,p
0 (Ω) is bounded.
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So, we may assume that un
w→ u∗

λ
in W 1,p

0 (Ω), un→ u∗
λ

in Lp(Ω). In (4.1), we choose the test
function h = un−u∗

λ
∈W 1,p

0 (Ω). It follows that

lim
n→∞
〈V (un),un−u∗

λ
〉= 0,

⇒un→ u∗
λ

in W 1,p
0 (Ω) as n→ ∞ (see Proposition 2.3). (4.3)

If, in (4.1), we take the limit as n→ ∞ and use (4.3), then

〈V (u∗
λ
),h〉=

∫
Ω

[λ (u∗
λ
)−η + f (z,u∗

λ
)]hdz for all h ∈W 1,p

0 (Ω),

ūµ ≤ u∗
λ

(see (3.69)).

Therefore u∗
λ
∈ Sλ ⊆ intC+ and u∗

λ
= infSλ .

(b) According to Proposition 3.6, we can find uσ ∈ Sσ ⊆ intC+ such that

u∗
λ
−uσ ∈ intC+ ⇒ u∗

λ
−u∗σ ∈ intC+ (since u∗σ ≤ uσ ).

(c) We have

〈V (u∗
λ
),h〉=

∫
Ω

[λ (u∗
λ
)−η + f (z,u∗

λ
)]hdz for all h ∈W 1,p

0 (Ω), all 0 < λ ≤ 1. (4.4)

In (4.4), we choose the test function h = u∗
λ
∈W 1,p

0 (Ω). Since u∗
λ
≤ u∗1 for all 0 < λ ≤ 1,

hypothesis H2(i) and the fact that u∗1 ∈ intC+, we obtain

ĉ‖u∗
λ
‖p ≤ λc28 for some c28 > 0, all 0 < λ ≤ 1,

⇒u∗
λ
→ 0 in W 1,p

0 (Ω) as λ → 0+. (4.5)

In view of the regularity result of Giacomoni-Kumar-Sreenadh [5], we can find α ∈ (0,1) and
c29 > 0 such that u∗

λ
∈C1,α

0 (Ω) and ‖u∗
λ
‖C1

0(Ω) ≤ c29 for all 0 < λ ≤ 1. The compact embedding

of C1,α
0 (Ω) into C1

0(Ω) (Arzela-Ascoli Theorem) and (4.5) imply that u∗
λ
→ 0 in C1

0(Ω) as
λ → 0+. �

For the solution set Sλ ⊆ intC+, we have the following topological property.

Proposition 4.2. If hypotheses H0 and H ′2 hold and λ ∈ L, then Sλ is nonempty and compact
in C1

0(Ω).

Proof. We claim that Sλ ⊆W 1,p
0 (Ω) is bounded. Arguing by contradiction, we suppose that

there exists {un}n∈N ⊆ Sλ such that ‖un‖→∞ as n→∞. Setting yn =
un
‖un‖ , n∈N, one sees that

‖yn‖ = 1, yn ≥ 0 for all n ∈ N. Thus one may assume that yn
w→ y in W 1,p

0 (Ω) and yn→ y in
Lp(Ω), y≥ 0. Note that 〈V (un),h〉=

∫
Ω
[λu−η

n + f (z,un)]hdz for all h ∈W 1,p
0 (Ω) and all n ∈N.

This implies, for all h ∈W 1,p
0 (Ω) and all n ∈ N,

〈Aa1
p (yn),h〉+

1
‖un‖p−q 〈A

a2
q (yn),h〉=

λ

‖un‖p−1

∫
Ω

u−η
n hdz+

∫
Ω

f (z,un)

‖un‖p−1 hdz. (4.6)

We test (4.6) with h = yn− y ∈W 1,p
0 (Ω). It follows that

lim
n→∞
〈Aa1

p (yn),yn− y〉= 0

⇒yn→ y in W 1,p
0 (Ω) and ‖y‖= 1, y≥ 0 (see Proposition 2.3). (4.7)
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If, in (4.6), we take the limit as n→ ∞ and use hypothesis H ′2(ii), then

〈Aa1
p (y),h〉=

∫
Ω

η̂(z)yp−1hdz for all h ∈W 1,p
0 (Ω), with η̂0(z)≤ η̂(z)≤ η0(z) for a.a z ∈Ω,

⇒−∆
a1
p y(z) = η̂(z)y(z)p−1 in Ω, y|∂Ω = 0,

⇒y = 0 or y = nodal (see Proposition 2.2).

Both contradict (4.7). This proves the boundedness of Sλ ⊆W 1,p
0 (Ω) and as before. In view of

the nonlinear regularity result of Giacomoni-Kumar-Sreenadh [5], we have that Sλ ⊆C1
0(Ω̄) is

relatively compact.
Finally, we show that Sλ ⊆ C1

0(Ω̄) is closed. To this end, one assumes that un ∈ Sλ , n ∈ N
and un→ u in C1

0(Ω̄). Note that ūµ ≤ u, due to ūµ ≤ un for all n ∈ N and µ ∈ (0,1) small. One
also has

〈V (un),h〉=
∫

Ω

[λu−η
n + f (z,un)]hdz for all h ∈W 1,p

0 (Ω), all n ∈ N,

⇒〈V (u),h〉=
∫

Ω

[λu−η + f (z,u)]hdz for all h ∈W 1,p
0 (Ω) ⇒ u ∈ Sλ

Therefore S⊆C1
0(Ω) is closed, hence compact. �

Remark 4.1. The above proof reveals that if D ⊆ R+ is bounded, then ∪λ∈DSλ

C1
0(Ω) ⊆C1

0(Ω)
is compact.

Next, we study the continuity properties of the solution multifunction λ → Sλ . First, we
recall some notions and results from multivalued analysis that we need for this study. Details
can be found in Hu-Papageorgiou [10, Chapter 5].

Let X ,Y be two Hausdorff topological spaces and S : X → 2Y \{ /0} a multifunction. We say
(a) S(·) is “lower semicontinuous” (abbreviated “lsc”) if, for all U ⊆ Y open, S−(U) = {x ∈

X : S(x)∩U 6= 0} is open in X .
(b) S(·) is “upper semicontinuous” (abbreviated “usc”) if, for all U ⊆ Y open, S+(U) = {x ∈

X : S(x)⊆U} is open in X .
(c) S(·) is “continuous” or “Vietoris continuous” if it is both lsc and usc.

Remark 4.2. If S(·) is single valued, then both notions of lower and upper semicontinuity,
coincide with that of continuity.

If Y is a metric with metric d(·, ·) and A,C ⊆ Y nonempty, we set

h∗(A,C) = sup{d(a,C) : a ∈ A}= inf{ε > 0 : A⊆Cε}

with Cε = {x ∈ X : d(x,C)< ε} (the open ε-enlargement of C).
Using h∗, we can define the “Hausdorff distance” between A and C by

h(A,C) = max{h∗(A,C), h∗(C,A)}= inf{ε > 0 : A⊆Cε , C ⊆ Aε}.

Remark 4.3. Observe that h∗(A,C)= sup{d(y,C)−d(y,A) : y∈Y} and h(A,C)= sup{|d(y,C)−
d(y,A)| : y ∈ Y}.

The space of bounded and closed subsets of Y equipped with the Hausdorff distance h(·, ·) is
a metric space and /0 is an isolated point in that space. Moreover, if Y is complete, then so is
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this hyperspace with the Hausdorff metric. Finally, by Pk(Y ), we denote the family of nonempty
and compact subset of Y and by Pb f (Y ) the family of nonempty, bounded closed subset of Y .

Suppose that X is a Hausdorff topological space, (Y,d) a metric space and S : X → 2Y \{ /0}.
We say

(a) ′ S(·) is “h-lower semicontinuous” (abbreviated “h-lsc”) if, for all x∈X , u→ h∗(S(x),S(u))
is continuous on X .

(b) ′ S(·) is “h-upper semicontinuous” (abbreviated “h-usc”) if, for all x∈X , u→ h∗(S(u),S(x))
is continuous on X .

(c) ′ S(·) is “h-continuous” if it is both h-lsc and h-usc.

Remark 4.4. If S(·) has values in Pb f (Y ), then h-continuity is continuity from X into (Pb f (Y ),h).

The next statements establish the relations between these notions.
(1) h-lsc⇒ lsc and usc⇒ h-usc.
(2) If S(·) is Pk(Y )-valued, then h-lsc⇔ lsc and usc⇔ h-usc.
Now we can state the first continuity result for the solution multifunction.

Proposition 4.3. If hypotheses H0 and H ′2 hold, then the solution multifunction λ → Sλ from L

into Pk(C1
0(Ω̄)) is both lsc and h-lsc.

Proof. According to Hu-Papageorgiou [10, Proposition 5.6], it suffices to demonstrate that if
{λn,λ}n∈N ⊆ L and λn→ λ , then Sλ ⊆ liminfn→∞ Sλ in C1

0(Ω), where we recall that

liminf
n→∞

Sλ = {u ∈C+ : u = lim
n→∞

un in C1
0(Ω), un ∈ Sλn for all n ∈ N}

= {u ∈C+ : lim
n→∞

d(u,Sλn) = 0}.

Let u ∈ Sλ ⊆ intC+ and consider the Dirichlet problem

−∆
a1
p v−∆

a2
q v = λnu−η + f (z,u) in Ω, v|∂Ω = 0. (4.8)

Using Hardy’s inequality, we see that λnu−η ∈ W−1,p′(Ω)∩ Ls(Ω), 1 ≤ s < 1
η
. Recall that

W−1,p′(Ω) = W 1,p(Ω)∗, 1
p +

1
p′ = 1. On account of hypothesis H ′2(i) and u ∈ Sλ ⊆ intC+,

we have f (·,u(·)) ∈ L∞(Ω). From Proposition 2.3, we see that V (·) is maximal monotone and
clearly it is coercive. Therefore V (·) is surjective (see Hu-Papageorgiou [10, p.444]). So, we can
find vn ∈W 1,p

0 (Ω) solution of (4.8). This solution is unique because of the strict monotonicity
of V (·). We know that u ∈ intC+, ūµ ≤ u for µ ∈ (0, inf{λn}n∈N), and λnu(·)−η + f (·,u(·)) ∈
L∞

loc(Ω). Moreover, we have

|λnu−η + f (z,u)| ≤c30(ū
−η
µ +1) for some c30 > 0

≤c31d̂−η for some c31 > 0, all n ∈ N

(recall that ūµ ∈ intC+ and so c∗d̂ ≤ ūµ for some c∗ > 0 and d̂(x) = d(z,∂Ω), z∈Ω). Therefore
{vn}n∈N ⊆ L∞(Ω) is bounded and we can find α ∈ (0,1) and c32 > 0 such that vn ∈ C1,α

0 (Ω)
and ‖vn‖C1,α

0 (Ω)
≤ c32 for all n ∈ N. (see Papageorgiou-Rădulescu [17, Proposition 4] and

Giacomoni-Kumar-Sreencidh [5, Theorem 1.7]). As before, exploiting the compact embedding
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of C1,α
0 (Ω) into C1

0(Ω), we may assume that

vn→ v in C1
0(Ω) as n→ ∞, (4.9)

⇒−∆
a1
p v−∆

a2
q v = λu−η + f (z,u) in Ω, v|∂Ω = 0 (4.10)

We see that problem (4.10) has a unique solution and u ∈ Sλ ⊆ intC+ is a solution to (4.10).
Therefore v = u ∈ intC+. From (4.9), it follows that we may assume that vn ∈ intC+ for all
n ∈ N. Let v0

n = vn ∈ intC+ and consider the Dirichlet problem

−∆
a1
p v−∆

a2
q v = λn(v0

n)
−η + f (z,v0

n) in Ω, v|∂Ω = 0.

As above, this problem has a unique solution v1
n ∈ C1,α

0 (Ω) and v1
n → u in C1

0(Ω) as n→ ∞.

Since u ∈ intC+, we can say that v1
n ∈ intC+ for all n ∈ N. Continuing this way, we generate a

sequence {vk
n}n∈N,k∈N0 ⊆ intC+ such that

−∆
a1
p vk

n−∆
a2
q vk

n = λ (vk−1
n )−η + f (z,vk−1

n ) in Ω,

vk
n|∂Ω = 0,

vk
n→ u in C1

0(Ω) as n→ ∞, for all n ∈ N0.

(4.11)

Claim: For every n ∈ N, {vk
n}k∈N0 ⊆W 1,p

0 (Ω) is bounded.

We argue by contradiction. Suppose that ‖vk
n‖ → ∞ as k→ +∞. Setting yk =

vk
n
‖vk

n‖
for all

k ∈ N0, one sees that ‖yk‖ = 1, yk ≥ 0 for all k ∈ N0 and so we may assume that yk
w→ y in

W 1,p
0 (Ω) and yk→ y in Lp(Ω) as k→ ∞. It follows from (4.11) that

〈Aa1
p (yk),h〉+

1
‖vk

n‖p−q 〈A
a2
q (yk),h〉=

λn

‖vk
n‖p−1

∫
Ω

(vk−1
n )−ηhdz+

∫
Ω

f (z,vk−1
n )

‖vk
n‖p−1 hdz (4.12)

for all h ∈W 1,p
0 (Ω), all k ∈ N0.

In (4.12), we choose the test function h = yk−y∈W 1,p
0 (Ω) and pass to the limit as k→∞. Then

limk→∞〈Aa1
p (yk),yk− y〉= 0, which implies that

yk→ y in W 1,p
0 (Ω), ‖y‖= 1, y≥ 0. (4.13)

In (4.12), letting k→ ∞ and using (4.13), we obtain

〈Aa1
p (y),h〉=

∫
Ω

η̂(z)yp−1hdz for all h ∈W 1,p
0 (Ω),where η̂0(z)≤ η̂(z)≤ η0(z) for a.a z ∈Ω,

⇒−∆
a1
p y(z) = η̂(z)y(z)p−1 in Ω, y|∂Ω = 0.

As before, we have that y= 0 or y=nodal, both contradicting (4.13). This means that {yk}k∈N0 ⊆
W 1,p

0 (Ω) bounded. This proves the Claim. Using the Claim and the regularity result of Giacomoni-
Kumar-Sreenadh [5], we can find α ∈ (0,1) and c33 > 0 such that vk

n ∈C1,α
0 (Ω) and ‖vk

n‖C1,α
0 (Ω)

≤
c33 for all k ∈ N0. So, we may assume vk

n→ vn in C1
0(Ω) as k→ ∞. From (4.11), we obtain

−∆
a1
p vn−∆

a2
q vn = λnv−η

n + f (z,vn) in Ω, vn|∂Ω = 0, n ∈ N,
⇒vn ∈ Sλn for all n ∈ N. (4.14)
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Moreover, {vn}n∈N⊆W 1,p
0 (Ω) is bounded. Using the double limit lemma (see Hu-Papageorgiou

[10, Lemma 1.193]), we have vn→ u in C1
0(Ω), which implies

u ∈ liminf
n→∞

Sλ (see (4.14))⇒ Sλ ⊆ liminf
n→∞

Sλ ⇒ λ → Sλ is lsc.

Since the multifunction is Pk(C1
0(Ω))-valued, it follows that λ → Sλ is h-lsc. �

In fact, the solution multifunction has more continuity properties.

Proposition 4.4. If hypotheses H ′2 hold, then the solution multifunction λ → Sλ from L into
Pk(C1

0(Ω)) is both usc and h-usc.

Proof. From Proposition 3.12 and its proof (see also the Remark following that proposition), we
have that λ → Sλ is locally compact. By Hu-Papageorgiou [10, Proposition 5.13], to show the
upper semicontinuity of the solution multifunction, it suffices to show that it has closed graph.
To this end, let {λn,λ}n∈N ⊆ L, {un}n∈N ∈ intC+ and

λn→ λ , un→ u in C1
0(Ω), un ∈ Sλn for all n ∈ N. (4.15)

For µ ∈ (0, inf{λn}n∈N) small, we have

ūµ ≤ un for all n ∈ N. (4.16)

and

〈V (un),h〉=
∫

Ω

[λnu−η
n + f (z,un)]hdz for all h ∈W 1,p

0 (Ω), all n ∈ N. (4.17)

Passing to the limit as n→ ∞ in (4.17) and using (4.15), we obtain

〈V (u),h〉=
∫

Ω

[λu−η + f (z,u)]hdz for all h ∈W 1,p
0 (Ω),

ūµ ≤ u (see (4.16)).

It follows that u ∈ Sλ , so λ → Sλ is usc, and hence h-usc too. �

Propositions 4.3 and 4.4 lead to the following strong continuity property of the solution mul-
tifunction.

Theorem 4.1. If hypotheses H0 and H ′2 hold, then the solution multifunction λ → Sλ from L

into Pk(C1
0(Ω)) is continuous and h-continuous.
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