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Abstract. In this paper, we propose an accelerated alternating structure-adapted proximal gradient de-
scent algorithm for a class of nonconvex and nonsmooth nonseparable problems. The proposed algorithm
is a monotone method which combines two-step inertial extrapolation and generalized Bregman distance.
Under some assumptions, we prove that every cluster point of the sequence generated by our algorithm
is a critical point. Furthermore, with the help of the Kurdyka–Łojasiewicz property, we establish the
convergence of the whole sequence generated by proposed algorithm. In order to make the algorithm
more effective and flexible, we also use some strategies to update the extrapolation parameter. More-
over, we report some preliminary numerical results on Poisson linear inverse problems to demonstrate
the feasibility and effectiveness of the proposed algorithm.
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1. INTRODUCTION

In this paper, we investigate the problem of solving the following nonconvex and nonsmooth
nonseparable optimization problem:

min
x∈Rn,y∈Rm

L(x,y) = f (x)+Q(x,y)+g(y), (1.1)

where f : Rn→R and g : Rm→R are proper, lower semicontinuous, and nonconvex functions,
Q : Rn×Rm → R∪{∞} is a proper, lower semicontinuous and biconvex function. Problem
(1.1) is used in many application scenarios, such as Poisson linear inverse problems [1, 2, 3],
signal recovery [4, 5, 6], nonnegative matrix facorization [7, 8], multi-modal learning for image
classification [9], and so on.

A natural method to solve problem (1.1) is the alternating minimization (AM) method (also
called block coordinate descent (BCD) method), which, from a given initial point (x0,y0) ∈
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Rn×Rm, generates the iterative sequence {(xk,yk)} via the scheme:{
xk+1 ∈ argminx∈Rn{L(x,yk)},
yk+1 ∈ argminy∈Rm{L(xk+1,y)}.

(1.2)

If L(x,y) is convex and continuously differentiable, and strictly convex in one argument while
the other is fixed, then the sequence converges to a critical point [10, 11].

To relax the requirements of AM method and remove the strict convexity assumption, Auslen-
der [12] introduced proximal terms to (1.2) for convex function L:{

xk+1 ∈ argminx∈Rn{L(x,yk)+
1

2λk
‖x− xk‖2

2},
yk+1 ∈ argminy∈Rm{L(xk+1,y)+ 1

2µk
‖y− yk‖2

2},
(1.3)

where {λk}k∈N and {µk}k∈N are positive sequences. The above proximal point method, which
is called proximal alternating minimization (PAM) algorithm, was further extended to noncon-
vex nonsmooth functions. In [13], Attouch et al. applied (1.3) to solve nonconvex problem
(1.1) and proved the sequence generated via (1.3) converges to a critical point. More conver-
gence analysis of the proximal point method can be found in [14, 15, 16, 17]. Because the
proximal alternating minimization algorithm requires an exact solution at each iteration-step,
the subproblems are very expensive if the minimizers of subproblems are not given in a closed
form. The linearization technique is one of the effective methods to overcome the absence of an
analytic solution to the subproblems. Bolte, Sabach and Teboulle [18] proposed the following
proximal alternating linearized minimization (PALM) algorithm under the condition that the
coupling term Q(x,y) is continuously differentiable:{

xk+1 ∈ argminx∈Rn{ f (x)+ 〈x,∇xQ(xk,yk)〉+ 1
2λk
‖x− xk‖2

2},
yk+1 ∈ argminy∈Rm{g(y)+ 〈y,∇yQ(xk+1,yk)〉+ 1

2µk
‖y− yk‖2

2}.
(1.4)

For any fixed yk, ∇xQ(·,yk) is L∇xQ(·,yk)-Lipschitz continuous. Likewise, for any fixed xk,
∇yQ(xk, ·) is L∇yQ(xk,·)-Lipschitz continuous. So the step-size λk and µk are limited to

λk ∈

(
0,

1
L∇xQ(·,yk)

)
,µk ∈

(
0,

1
L∇yQ(xk+1,·)

)
.

In this way, the solution of some subproblems may be expressed by a closed-form or can be eas-
ily calculated. The global convergence result was established if L(x,y) satisfied the Kurdyka–
Łojasiewicz property.

When f and g are continuously differentiable, a natural idea is to linearize f and g. Nikolova
and Tan [19] proposed the corresponding algorithm, called the alternating structure-adapted
proximal gradient descent (ASAP) algorithm with the following scheme:xk+1 ∈ arg min

x∈Rn
{Q(x,yk)+ 〈x,∇ f (xk)〉+ 1

2τ
‖x− xk‖2

2},

yk+1 ∈ arg min
y∈Rm
{Q(xk+1,y)+ 〈y,∇g(yk)〉+ 1

2σ
‖y− yk‖2

2},
(1.5)

where τ ∈ (0, 1
L∇ f

) and σ ∈ (0, 1
L∇g

). With the help of the Kurdyka–Łojasiewicz property, they
established the convergence of the whole sequence generated by (1.5). The key point of the
ASAP algorithm is that f and g are assumed to be globally Lipschitz smooth on the entire
spaces, which is very restrictive and excludes many applications. In order to attenuate this
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assumption, Bauschke, Bolte and Teboulle [1] introduced a NoLips algorithm, avoiding the
dependence of the Lipschitz smoothness, which is then extended to the nonconvex case in [20,
21, 22]. In [23], Gao et al. proposed the following alternating structure-adapted Bregman
proximal (ASABP) gradient descent algorithm:

xk+1 ∈ arg min
x∈Rn
{Q(x,yk)+ 〈x,∇ f (xk)〉+ 1

τk
Dφ1(x,xk)},

yk+1 ∈ arg min
y∈Rm
{Q(xk+1,y)+ 〈y,∇g(yk)〉+ 1

σk
Dφ2(y,yk)},

where they choose the generalized Bregman functions φ1 and φ2 such that the pairs ( f ,φ1) and
(g,φ2) are GL-smad on x and y (see Definition 2.4 and Definition 2.7). By associating the
generalized Bregman functions φ1 and φ2 to the objective functions f and g in a suitable way,
and merely assuming that the underlying function satisfies the Kurdyka–Łojasiewicz property
yet without the Lipschitz smoothness, they established the global convergence to a critical point.

The inertial extrapolation technique has been widely used to accelerate various algorithms for
convex and nonconvex optimizations since the cost of each iteration stays basically unchanged
[24, 25, 26, 27, 28]. The inertial scheme, starting from the so-called heavy ball method of
Polyak [29], was recently proved to be very efficient in accelerating numerical methods, es-
pecially the first-order methods. Alvarez and Attouch [30] applied the inertial strategy to the
proximal point method and proved that it could improve the rate of convergence. The main
feature of the idea is that the new iteration use the previous two or more iterations.

Based on (1.4), Pock and Sabach [31] proposed the following inertial proximal alternating
linearized minimization (iPALM) algorithm:


u1k = xk +α1k(xk− xk−1),v1k = xk +β1k(xk− xk−1),

xk+1 ∈ argminx∈Rn{ f (x)+ 〈x,∇xQ(v1k,yk)〉+ 1
2λk
‖x−u1k‖2

2},
u2k = yk +α2k(yk− yk−1),v2k = yk +β2k(yk− yk−1),

yk+1 ∈ argminy∈Rm{g(y)+ 〈y,∇yQ(xk+1,v2k)〉+ 1
2µk
‖y−u2k‖2

2},

where α1k,α2k,β1k,β2k ∈ [0,1]. They proved that the generated sequence globally converges to
critical point of the objective function under the condition of the Kurdyka–Łojasiewicz property.
When α1k ≡ α2k ≡ β1k ≡ β2k ≡ 0, iPALM reduces to PALM. Then Gao, Cai and Han [32]
presented a Gauss–Seidel type inertial proximal alternating linearized minimization (GiPALM)
algorithm for solving problem (1.1):


xk+1 ∈ argminx∈Rn{ f (x)+ 〈x,∇xQ(x̃k, ỹk)〉+ 1

2λk
‖x− x̃k‖2

2},
x̃k+1 = xk+1 +α(xk+1− x̃k),α ∈ [0,1),
yk+1 ∈ argminy∈Rm{g(y)+ 〈y,∇yQ(x̃k+1, ỹk)〉+ 1

2µk
‖y− ỹk‖2

2},
ỹk+1 = yk+1 +β (yk+1− ỹk),β ∈ [0,1).
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By using inertial extrapolation technique, Yang and Xu [33] proposed the following acceler-
ated alternating structure-adapted proximal gradient descent (aASAP) algorithm:

xk+1 ∈ argminx∈Rn{Q(x, ŷk)+ 〈∇ f (x̂k),x〉+ 1
2τ
‖x− x̂k‖2

2},
yk+1 ∈ argminy∈Rm{Q(xk+1,y)+ 〈∇g(ŷk),y〉+ 1

2σ
‖y− ŷk‖2

2},
uk+1 = xk+1 +βk(xk+1− xk),vk+1 = yk+1 +βk(yk+1− yk),

if L(uk+1,vk+1)≤ L(xk+1,yk+1), then x̂k+1 = uk+1, ŷk+1 = vk+1,

else x̂k+1 = xk+1, ŷk+1 = yk+1.

(1.6)

Compared with the traditional extrapolation algorithm, the main difference is to ensure that
the algorithm is monotone in terms of objective function values, while general extrapolation
algorithms may be nonmonotonic.

The Bregman distance gives us alternative ways for more flexibility in the selection of regu-
larization. Bregman distance regularization is an effective way to improve the numerical results
of various algorithms. In [34], the authors constructed the following two-step inertial Bregman
alternating minimization algorithm by using the information of the previous three iterates:{

xk+1 ∈ argminx∈Rn{L(x,yk)+Dφ1(x,xk)+α1k〈x,xk−1− xk〉+α2k〈x,xk−2− xk−1〉},
yk+1 ∈ argminy∈Rm{L(xk+1,y)+Dφ2(y,yk)+β1k〈y,yk−1− yk〉+β2k〈y,yk−2− yk−1},

where Dφi(i = 1,2) denotes the Bregman distance with respect to φi(i = 1,2), respectively. The
convergence was obtained provided that an appropriate regularization of the objective function
satisfies the Kurdyka–Łojasiewicz inequality. Based on alternating minimization algorithm,
Cho, Nong and Zhao [35] proposed the following inertial alternating minimization with Breg-
man distance (BIAM) algorithm:

xk+1 ∈ argminx∈Rn{ f (x)+Q(x, ŷk)+λkDφ1(x, x̂k)},
x̂k+1 = xk+1 +α(xk+1− x̂k),α ∈ [0,1),
yk+1 ∈ argminy∈Rm{g(y)+Q(x̂k+1,y)+µkDφ2(y, ŷk)},
ŷk+1 = yk+1 +β (yk+1− ŷk),β ∈ [0,1).

Suppose that the benefit function satisfies the Kurdyka–Łojasiewicz property and the parameters
are selected appropriately, they proved the convergence of BIAM algorithm.

In this paper, based on the alternating structure-adapted proximal gradient method, we com-
bine inertial extrapolation technique and a generalized Bregman distance to construct a two-step
inertial Bregman alternating structure-adapted proximal gradient descent algorithm. In order to
make the proposed algorithm more effective and flexible, we also use some strategies to update
the extrapolation parameter. Under some assumptions about the penalty parameter and objec-
tive function, the convergence of the proposed algorithm is obtained based on the Kurdyka–
Łojasiewicz property yet the underlying function without the Lipschitz smoothness. Moreover,
we report some preliminary numerical results on Poisson linear inverse problem to show the
feasibility and effectiveness of the proposed method.

The article is organized as follows. In Section 2, we recall some concepts and important
lemmas which are used in the proof of main results. In Section 3, we present the two-step
inertial Bregman alternating structure-adapted proximal gradient descent algorithm and analyze
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its convergence. Finally, in Section 5, the preliminary numerical examples on Poisson linear
inverse problem are provided to illustrate the behavior of the proposed algorithm.

2. PRELIMINARIES

Consider the Euclidean space Rd of dimension d ≥ 1. The standard inner product and the
induced norm on Rd are denoted by 〈·, ·〉 and ‖·‖2, respectively. We use ω(xk) = {x : ∃xk j → x}
to stand for the limit set of {xk}k∈N. The domain of f is defined as dom f := {x ∈ Rd : f (x) <
+∞}. We say that f is proper if dom f 6= /0, and f is called lower semicontinuous at x if
f (x)≤ liminfk→∞ f (xk) for every sequence {xk} converging to x. If f is lower semicontinuous
in its domain, we say f is a lower semicontinuous function. If dom f is closed and f is lower
semicontinuous over dom f , then f is a closed function. Further we recall some generalized
subdifferential notions and the basic properties which are needed in this paper.

2.1. Subdifferentials.

Definition 2.1. (Subdifferentials) Let f :Rd→ (−∞,+∞] be a proper and lower semicontinuous
function. For x ∈ dom f , the Fréchet subdifferential of f at x, written as ∂̂ f (x), is the set of
vectors v ∈ Rd which satisfies

liminf
y→x

1
‖x− y‖2

[ f (y)− f (x)−〈v,y− x〉]≥ 0.

If x 6∈ dom f , then ∂̂ f (x) = /0. The limiting-subdifferential [36], or simply the subdifferential for
short, of f at x ∈ dom f , written as ∂ f (x), is defined as follows:

∂ f (x) := {v ∈ Rd : ∃xk→ x, f (xk)→ f (x),vk ∈ ∂̂ f (xk),vk→ v}.

Remark 2.1. (a) The above definition implies that ∂̂ f (x) ⊆ ∂ f (x) for each x ∈ Rd , where the
first set is convex and closed while the second one is closed (see [37]).

(b) (Closedness of ∂ f ) Let {xk}k∈N and {vk}k∈N be sequences in Rd such that vk ∈ ∂ f (xk)
for all k ∈ N. If (xk,vk)→ (x,v) and f (xk)→ f (x) as k→ ∞, then v ∈ ∂ f (x).

(c) If f : Rd → (−∞,+∞] be a proper and lower semicontinuous and h : Rd → R is a contin-
uously differentiable function, then ∂ ( f +h)(x) = ∂ f (x)+∇h(x) for all x ∈ Rd .

In what follows, we consider the problem of finding a critical point (x∗,y∗) ∈domL.

Lemma 2.1. (Fermat’s rule [37]) Let f : Rd → R∪{+∞} be a proper lower semicontinuous
function. If f has a local minimum at x∗, then 0 ∈ ∂ f (x∗).

We call x∗ is a critical point of f if 0 ∈ ∂ f (x∗). The set of all critical points of f is denoted
by crit f .

2.2. The Kurdyka–Łojasiewicz property. Let f : Rd → (−∞,+∞] be a proper and lower
semicontinuous function. For η1, η2 such that −∞ < η1 < η2 ≤ +∞, we set [η1 < f < η2] =
{x ∈ Rd : η1 < f (x) < η2}. For η > 0, we denote by Φη the class of continuous concave
function ϕ : [0,η)→ R+ such that ϕ(0) = 0, ϕ is C1 on (0,η) and ϕ ′(s)> 0, ∀s ∈ (0,η).

Definition 2.2. (Kurdyka–Łojasiewicz property [13]) Let f : Rd → (−∞,+∞] be a proper and
lower semicontinuous function.
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(i) f : Rd → (−∞,+∞] is said to have the Kurdyka–Łojasiewicz (KŁ) property at x? ∈dom f
if there exist η ∈ (0,+∞], a neighborhood U of x?, and a function ϕ ∈Φη such that, for all x in
U ∩ [ f (x?)< f < f (x?)+η ], the Kurdyka–Łojasiewicz inequality holds,

ϕ
′( f (x)− f (x?))dist(0,∂ f (x))≥ 1.

(ii) Proper lower semicontinuous functions which have the Kurdyka–Łojasiewicz property at
each point of its domain are called KŁ functions.

Lemma 2.2. (Uniformized KŁ property [37]) Let Ψ be a compact set and let f : Rd → R∪
{+∞} be a proper and lower semicontinuous function. Assume that f is constant on Ψ and
satisfies the KŁ property at each point of Ψ. Then, there exist ε > 0,η > 0 and ϕ ∈ Φη such
that, for all x? ∈Ψ and for all x ∈

{
x ∈ Rd : dist(x,Ψ)< ε

}
∩ [ f (x?)< f < f (x?)+η ],

ϕ
′( f (x)− f (x?))dist(0,∂ f (x))≥ 1.

There is a broad class of functions satisfying the KŁ property, such as strongly convex func-
tions, real analytic functions, semi-algebraic functions [13], subanalytic functions [38], log-exp
functions, and so on.

2.3. Generalized Bregman function and Bregman distance.

Definition 2.3. A function f is said convex if dom f is a convex set and if, for all x, y ∈dom f ,
α ∈ [0,1], f (αx+(1−α)y)≤ α f (x)+(1−α) f (y). f is said θ -strongly convex with θ > 0 if
f − θ

2 ‖ · ‖
2 is convex, i.e.,

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)− 1
2

θα(1−α)‖x− y‖2

for all x, y ∈dom f and α ∈ [0,1].

Suppose that f is differentiable. Then f is convex if and only if dom f is a convex set and
f (x) ≥ f (y)+ 〈∇ f (y),x− y〉 holds for all x, y ∈dom f . Moreover, f is θ -strongly convex with
θ > 0 if and only if f (x)≥ f (y)+ 〈∇ f (y),x− y〉+ θ

2 ‖x− y‖2 for all x, y ∈dom f . To define the
Bregman distance, we first give the definition of generalized Bregman function.

Definition 2.4. (Generalized Bregman function [23]) Let C be a nonempty and convex open
subset of Rd . Associated with C, a function φ :Rd→R∪{+∞} is called a generalized Bregman
function if it satisfies the following:

(i) φ is a proper lower semicontinuous, continuously differentiable, and strictly convex func-
tion.

(ii) dom∂φ =C = int domφ .
(iii) If {xk} ∈C converges to x ∈ ∂C (the boundary of C), then limk→+∞ 〈∇φ(xk),u− xk〉 =
−∞ for all u ∈C.

Definition 2.5. Let φ : Rd → (−∞,+∞] be a convex differentiable function. The function Dφ :
domφ × domφ → [0,+∞), defined by Dφ (x,y) = φ(x)− φ(y)−〈∇φ(y),x− y〉, is called the
Bregman distance with respect to φ .

From Definition 2.3, it follows that Dφ (x,y)≥ θ

2 ‖x− y‖2 if φ is θ -strongly convex.
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Remark 2.2. Note that the structural form of Dφ is also useful when φ is not convex, and still
enjoys the following two simple but remarkable properties:

(i) The three point identity: For any y, z ∈ int domφ and x ∈domφ ,

Dφ (x,z)−Dφ (x,y)−Dφ (y,z) = 〈∇φ(y)−∇φ(z),x− y〉.

(ii) Linear additivity: For any α,β ∈ R, and any functions φ1 and φ2,

Dαφ1+βφ2(x,y) = αDφ1(x,y)+βDφ2(x,y),

for any (x,y) ∈ (domφ1∩domφ2)
2 such that both φ1 and φ2 are differentiable at y.

It is obvious that the Bregman distance is, in general, not symmetric. It is thus natural to
introduce a measure for the symmetry of Dφ .

Definition 2.6. (Symmetry coefficient [1]) Given φ ∈ G (C), its symmetry coefficient is defined
by

α(φ) = inf
{

Dφ (x,y)/Dφ (y,x) | (x,y) ∈ int domφ × int domφ , x 6= y
}
∈ [0,1].

Remark 2.3. The symmetry coefficient has the following properties:
(i) Clearly, the closer α(φ) gets to 1, the more symmetric Dφ is.
(ii) For any x, y∈ int domφ , α(φ)Dφ (x,y)≤Dφ (y,x)≤ 1

α(φ)Dφ (x,y), where we have adopted

the convention that 1
0 =+∞ and+∞× r =+∞ for any r > 0.

Lemma 2.3. Given φ ∈ G (C), for any proper, lower semicontinuous, and convex function Γ :
Rd → R∪ {+∞} and any z ∈ int domφ , if z+ = argminx∈C{Γ(x) +Dφ (x,z)}, then, for any
x ∈ domφ , Γ(z+)+Dφ (z+,z)≤ Γ(x)+Dφ (x,z)−Dφ (x,z+).

2.4. Generalized L-smooth adaptable and extended descent lemma. We denote G ( f ,φ) the
set of pair of functions ( f ,φ) satisfying

(i) φ ∈ G (C),
(ii) f : Rd → R∪ {+∞} is proper lower semicontinuous nonconvex with domφ ⊂ dom f ,

which is continuously differentiable on C.

Definition 2.7. (Generalized L-smooth adaptable) A pair of functions ( f ,φ)∈ G ( f ,φ) is called
generalized L-smooth adaptable (GL-smad) on C if there exists L > 0 such that Lh+ f and
Lh− f are convex on C.

From the above definition, we immediately obtain the two-sided descent lemma, which com-
plements and extends the NoLips descent lemma derived in [1].

Lemma 2.4. (Extended descent lemma) The pair of functions ( f ,φ) ∈ G ( f ,φ) is GL-smad on
C if and only if

| f (x)− f (y)−〈∇ f (y) ,x− y〉| ≤ LDφ (x,y), ∀x ∈ domφ , ∀y ∈ int domφ .

Due to the structural form of Dφ , the extended descent lemma reads equivalently as∣∣ f (x)− f (z)−〈∇ f (y) ,x− z〉+D f (z,y)
∣∣≤ LDφ (x,y), ∀x, z ∈ domφ , ∀y ∈ int domφ . (2.1)

When f is assumed to be convex, the convexity condition of Lh+ f naturally holds. In this case,
the NoLips descent lemma given in [1] is recovered. When φ(z) = 1

2 ‖z‖
2 and consequently
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Dφ (x,y) = 1
2 ‖x− y‖2, Lemma 2.4 would be reduced to the descent lemma [39],

| f (x)− f (y)−〈∇ f (y) ,x− y〉| ≤ L
2
‖x− y‖2 , ∀x ∈ domφ , ∀y ∈ int domφ .

3. TWO-STEP INERTIAL BREGMAN ASAP ALGORITHM

Assumption 3.1. (i) L : Rn×Rm→ R∪{∞} is lower bounded.
(ii) φ1 ∈ G (X) and φ2 ∈ G (Y ) such that the pairs ( f ,φ1)∈ G ( f ,φ1) and (g,φ2)∈ G (g,φ2) are

GL-smad on X and Y with coefficients Lφ1 and Lφ2 , respectively.
(iii) For the sequence {xk} ∈ int domφ1 and x ∈ domφ1, ‖xk− x‖ → 0⇔ Dφ1(x,xk)→ 0.

Similarly, ‖yk− y‖→ 0⇔ Dφ2(y,yk)→ 0 for any sequence {yk} ∈ int domφ2 and y ∈ domφ2.
(iv) Q : Rn×Rm→ R∪{∞} is a proper, lower semicontinuous, and biconvex function.
(v) φi(i = 1,2) is µφi-strongly convex and differentiable function. And the gradient ∇φi is

Li-Lipschitz continuous, i.e.,

‖∇φ1(x)−∇φ1(x̂)‖ ≤ L1‖x− x̂‖, ‖∇φ2(y)−∇φ2(ŷ)‖ ≤ L2‖y− ŷ‖, ∀y, ŷ ∈ Rm. (3.1)

Remark 3.1. Combining linear additivity of the Bregman distance (see Remark 2.2 (ii)) and
Assumption 3.1 (ii) and (v), ∇ f is Lipschitz continuous with coefficient Lφ1L1 on any bounded
subset. Similarly, ∇g is Lipschitz continuous with coefficient Lφ2L2 on any bounded subset.

Algorithm 1 TiBASAP: Two-step inertial Bregman alternating structure-adapted proximal gra-
dient descent algorithm

Require: Take (x0,y0) ∈ Rn × Rm,(x̂0, ŷ0) = (x0,y0),αk ∈ [0,αmax],βk ∈ [0,βmax],αmax +
βmax < 1, and k = 0.
1. Compute

xk+1 ∈ arg min
x∈Rn
{Q(x, ŷk)+ 〈∇ f (x̂k),x− x̂k〉+

1
τk

Dφ1(x, x̂k)},

yk+1 ∈ arg min
y∈Rm
{Q(xk+1,y)+ 〈∇g(ŷk),y− ŷk〉+

1
σk

Dφ2(y, ŷk)}.
(3.2)

2. (
uk+1

vk+1

)
=

(
xk+1

yk+1

)
+αk

(
xk+1− xk

yk+1− yk

)
+βk

(
xk− xk−1

yk− yk−1

)
.

3. If L(uk+1,vk+1)≤ L(xk+1,yk+1), then

x̂k+1 = uk+1, ŷk+1 = vk+1, (3.3)

else
x̂k+1 = xk+1, ŷk+1 = yk+1. (3.4)

4. Set k← k+1, go to step1.

Remark 3.2. We discuss the relation of Algorithm 1 to the other existing algorithms from the
literature.
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(i) If we take φ1(x) = 1
2‖x‖

2
2, φ2(y) = 1

2‖y‖
2
2, τk ≡ τ and σk ≡ σ for all x ∈Rn, and y ∈Rm,

then Algorithm 1 becomes the following iterative method:

xk+1 ∈ argminx∈Rn{Q(x, ŷk)+ 〈∇ f (x̂k),x〉+ 1
2τ
‖x− x̂k‖2

2},
yk+1 ∈ argminy∈Rm{Q(xk+1,y)+ 〈∇g(ŷk),y〉+ 1

2σ
‖y− ŷk‖2

2},
uk+1 = xk+1 +αk(xk+1− xk)+βk(xk− xk−1),

vk+1 = yk+1 +αk(yk+1− yk)+βk(yk− yk−1),

if L(uk+1,vk+1)≤ L(xk+1,yk+1), then x̂k+1 = uk+1, ŷk+1 = vk+1,

else x̂k+1 = xk+1, ŷk+1 = yk+1.

(3.5)

(ii) Letting βk ≡ 0 for all k ≥ 0, one sees that (3.5) becomes the accelerated alternating
structure-adapted proximal gradient descent (aASAP) algorithm (1.6).

(iii) Letting αk ≡ βk ≡ 0 for all k ≥ 0, one sees that (3.5) becomes the alternating structure-
adapted proximal gradient descent (ASAP) algorithm (1.5).

Remark 3.3. Compared with the traditional extrapolation algorithm, the main difference is Step
3 which ensures the algorithm is a monotone method in terms of objective function value, while
general extrapolation algorithms may be nonmonotonic.

For extrapolation parameters αk and βk, there are at least two ways to choose them, either as
costant or by dynamic update. For example, in [40, 41], it was defined as{

αk = βk =
tk−1−1

2tk
,

tk+1 =
1+
√

1+4t2
k

2 ,
(3.6)

where t−1 = t0 = 1. In order to make Algorithm 1 more effective, we present an adaptive method
to update αk and βk, which are given in Algorithm 2.

Algorithm 2 Two-step inertial Bregman alternating structure-adapted proximal gradient descent
with adaptive extrapolation parameter algorithm

Require: Take (x0,y0) ∈ Rn×Rm, (x̂0, ŷ0) = (x0,y0), α0 ∈ [0,αmax], β0 ∈ [0,βmax], αmax +
βmax < 1, t > 1, and k = 0.
1. Compute

xk+1 ∈ arg min
x∈Rn
{Q(x, ŷk)+ 〈∇ f (x̂k),x− x̂k〉+

1
τk

Dφ1(x, x̂k)},

yk+1 ∈ arg min
y∈Rm
{Q(xk+1,y)+ 〈∇g(ŷk),y− ŷk〉+

1
σk

Dφ2(y, ŷk)}.

2. (
uk+1

vk+1

)
=

(
xk+1

yk+1

)
+αk

(
xk+1− xk

yk+1− yk

)
+βk

(
xk− xk−1

yk− yk−1

)
.

3. If L(uk+1,vk+1)≤ L(xk+1,yk+1), then
x̂k+1 = uk+1, ŷk+1 = vk+1, αk+1 = min{tαk,αmax} , βk+1 = min{tβk,βmax} ,

else
x̂k+1 = xk+1, ŷk+1 = yk+1, αk+1 = αk/t, βk+1 = βk/t.

4. Set k← k+1, go to Step1.
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Remark 3.4. Compared with constant or dynamic update by (3.6), the adaptive extrapolation
parameters αk and βk can make Algorithm 2 more effective and flexible. The numerical results
presented in this paper verify the effectiveness of the adaptive strategy in Section 5.

4. CONVERGENCE ANALYSIS

In this section, we prove the convergence of Algorithm 1. Note that the bound of αk and βk
is no more than αmax and βmax in Algorithm 2, respectively. So the convergence properties of
Algorithm 1 are also applicable for Algorithm 2.

Under Assumption 3.1, some convergence results are proved (see Lemma 4.1). We also
consider the following additional assumptions to establish stronger convergence results.

Assumption 4.1. (i) L is coercive and the domain of Q is closed.
(ii) The subdifferential of Q obeys:

∀(x,y) ∈ dom Q,∂xQ(x,y)×∂yQ(x,y)⊂ ∂Q(x,y).

(iii) Q : Rn×Rm→R∪{∞} has the following form Q(x,y) = q(x,y)+h(x), where h : Rn→
R∪ {∞} is continuous on its domain; q : Rn×Rm → R∪ {∞} is a continuous function on
dom Q such that, for any y, the partial function q(·,y) is continuously differentiable about x.
Besides, for each bounded subset D1 ×D2 ⊂ domQ, there exists ξ > 0, such that, for any
x̄ ∈ D1, (y, ȳ) ∈ D2×D2, it holds that ‖∇xq(x̄,y)−∇xq(x̄, ȳ)‖ ≤ ξ ‖y− ȳ‖ .

Remark 4.1. (i) Assumption 4.1(i) ensures that the sequences generated by our proposed algo-
rithms is bounded which plays an important role in the proof of convergence.

(ii) Assumption 4.1(ii) is a generic assumption for the convergence of alternating schemes.
Because f and g are continuously differentiable, we have ∂xL(x,y)× ∂yL(x,y) ⊂ ∂L(x,y) by
Remark 2.1 (c).

(iii) From Assumptions 3.1 and 4.1, L(x,y) is continuous on its domain, equal to dom Q,
which is nonempty and closed. For any sequence {(xk,yk)} converges to (x̄, ȳ), it holds that
{L(xk,yk)} converges to L(x̄, ȳ).

For more convenient notation, we introduce the following useful notations:

τ ≤ infτk ≤ supτk ≤ τ, σ ≤ infσk ≤ supσk ≤ σ , ∀k ∈ N.

Defining ρk = min{1+α(φ1)
τk
−Lφ1,

1+α(φ2)
σk

−Lφ2}, together with 0 < τk <
1+α(φ1)

Lφ1
and 0 < σk <

1+α(φ2)
Lφ2

, we have ρk > 0.

Lemma 4.1. Let Assumption 3.1 hold. Let {zk = (xk,yk)} and {ẑk = (x̂k, ŷk)} be the sequences
generated by Algorithm 1. Then the following assertions hold.

(i) {L(zk)} is monotonically nonincreasing. In particular, there exists ρ > 0 such that

L(zk)−L(zk+1)≥ ρ
[
Dφ1(xk+1, x̂k)+Dφ2(yk+1, ŷk)

]
. (4.1)

where ρ =min{1+α(φ1)
τ
−Lφ1,

1+α(φ2)
σ
−Lφ2}. Moreover, {L(zk)} converges to some finite value,

denoted by L∗.
(ii) It holds that ∑

∞
k=0
(
Dφ1(xk+1, x̂k)+Dφ2(yk+1, ŷk)

)
<+∞, limk→+∞ Dφ1(xk+1, x̂k) = 0 and

limk→+∞ Dφ2(yk+1, ŷk) = 0. Moreover, limk→+∞ ‖zk+1− ẑk‖= 0.
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(iii) (Convergence rate) For any K ≥ 0, it holds that

min
0≤k≤K

{
Dφ1(xk+1, x̂k)+Dφ2(yk+1, ŷk)

}
≤ 1

ρ(K +1)
(L(z0)−L∗) .

Proof. (i) Applying Lemma 2.3 with Γ(x) = τk (Q(x, ŷk)+ 〈∇ f (x̂k),x− x̂k〉), it yields that, for
any x ∈ domφ1,

Q(xk+1, ŷk)−Q(x, ŷk)

≤ 〈∇ f (x̂k),x− xk+1〉+
1
τk

Dφ1(x, x̂k)−
1
τk

Dφ1(x,xk+1)−
1
τk

Dφ1(xk+1, x̂k)

≤ f (x)− f (xk+1)+Lφ1Dφ1(x, x̂k)+D f (xk+1, x̂k)+
1
τk

Dφ1(x, x̂k)−
1
τk

Dφ1(x,xk+1)

− 1
τk

Dφ1(xk+1, x̂k)

≤ f (x)− f (xk+1)+

(
1
τk

+Lφ1

)
Dφ1(x, x̂k)−

1
τk

Dφ1(x,xk+1)−
(

1
τk
−Lφ1

)
Dφ1(xk+1, x̂k),

where the second inequality follows from Lemma 2.4, and the last inequality follows from the
GL-smad property of ( f ,φ). Particularly, taking x = x̂k, together with the nonnegativity of
Bregman distance Dφ1 and Remark 2.3 (ii), we obtain

f (xk+1)+Q(xk+1, ŷk)≤ f (x̂k)+Q(x̂k, ŷk)−
1
τk

Dφ1(x̂k,xk+1)−
(

1
τk
−Lφ1

)
Dφ1(xk+1, x̂k)

≤ f (x̂k)+Q(x̂k, ŷk)−
(

1+α(φ1)

τk
−Lφ1

)
Dφ1(xk+1, x̂k).

(4.2)
Similarly, one has

Q(xk+1,yk+1)+g(yk+1)≤ Q(xk+1, ŷk)+g(ŷk)−
(

1+α(φ2)

σk
−Lφ2

)
Dφ2(yk+1, ŷk). (4.3)

Adding (4.2) and (4.3), we have

L(xk+1,yk+1)

≤L(x̂k, ŷk)−
(

1+α(φ1)

τk
−Lφ1

)
Dφ1(xk+1, x̂k)−

(
1+α(φ2)

σk
−Lφ2

)
Dφ2(yk+1, ŷk)

≤L(xk,yk)−
(

1+α(φ1)

τ
−Lφ1

)
Dφ1(xk+1, x̂k)−

(
1+α(φ2)

σ
−Lφ2

)
Dφ2(yk+1, ŷk)

≤L(xk,yk)−ρ
[
Dφ1(xk+1, x̂k)+Dφ2(yk+1, ŷk)

]
,

where ρ = min{1+α(φ1)
τ
−Lφ1,

1+α(φ2)
σ
−Lφ2}, which can be abbreviated as

L(zk)−L(zk+1)≥ ρ
[
Dφ1(xk+1, x̂k)+Dφ2(yk+1, ŷk)

]
. (4.4)

According to Assumption 3.1, we see L is lower bounded. Hence {L(zk)} converges to some
real number L∗.

(ii) Using inequality (4.4), we have, for all k ≥ 0,

Dφ1(xk+1, x̂k)+Dφ2(yk+1, ŷk)≤
1
ρ
(L(zk)−L(zk+1)) .
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For K ≥ 0, summing from k = 0 to K and using the statement (i), we obtain
K

∑
k=0

(
Dφ1(xk+1, x̂k)+Dφ2(yk+1, ŷk)

)
≤ 1

ρ
(L(z0)−L(zK+1))≤

1
ρ
(L(z0)−L∗)<+∞. (4.5)

Taking the limit as k→ ∞ leads to
∞

∑
k=0

(
Dφ1(xk+1, x̂k)+Dφ2(yk+1, ŷk)

)
<+∞,

which deduces that limk→+∞ Dφ1(xk+1, x̂k) = 0 and limk→+∞ Dφ2(yk+1, ŷk) = 0. Moreover, one
has limk→+∞ ‖zk+1− ẑk‖= 0.

(iii) Using (4.5) yields
K

∑
k=0

(
Dφ1(xk+1, x̂k)+Dφ2(yk+1, ŷk)

)
≤ 1

ρ
(L(z0)−L∗) .

Hence, we obtain

min
0≤k≤K

{
Dφ1(xk+1, x̂k)+Dφ2(yk+1, ŷk)

}
≤ 1

ρ(K +1)
(L(z0)−L∗) .

�

Lemma 4.2. Let Assumption 3.1 and Assumption 4.1 hold. Let {zk = (xk,yk)} and {ẑk = (x̂k, ŷk)}
be the sequences generated by Algorithm 1. For any integer k ≥ 1, set

pk+1
x = ∇xq(xk+1,yk+1)−∇xq(xk+1, ŷk)+qk+1

x , (4.6)

where qk+1
x = ∇ f (xk+1)−∇ f (x̂k)− 1

τk
(∇φ1(xk+1)−∇φ1(x̂k)). Then there exists ρ > 0 such

that
dist(0,∂L(zk+1))≤ ρ ‖zk+1− ẑk‖ . (4.7)

Proof. From iterative scheme (3.2), we see that

xk+1 ∈ arg min
x∈Rn
{Q(x, ŷk)+ 〈∇ f (x̂k),x〉+

1
τk

Dφ1(x, x̂k)}.

By Fermat’s rule, we have

0 ∈ ∂xQ(xk+1, ŷk)+∇ f (x̂k)+
1
τk

(∇φ1(xk+1)−∇φ1(x̂k)) ,

which implies that

∇ f (xk+1)−∇ f (x̂k)−
1
τk

(∇φ1(xk+1)−∇φ1(x̂k)) ∈ ∂xQ(xk+1, ŷk)+∇ f (xk+1) = ∂xL(xk+1, ŷk).

(4.8)
Similarly, in view of the y-subproblem in iterative scheme (3.2), we have

0 ∈ ∂yQ(xk+1,yk+1)+∇g(ŷk)+
1
σk

(∇φ2(yk+1)−∇φ2(ŷk)) ,

which implies that

∇g(yk+1)−∇g(ŷk)−
1
σk

(∇φ2(yk+1)−∇φ2(ŷk)) ∈ ∂yQ(xk+1,yk+1)+∇g(yk+1) = ∂yL(zk+1).

(4.9)
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From Assumption 4.1 (iii), we see that ∂xQ(x,y) = ∇xq(x,y)+ ∂h(x). According to (4.8), we
have

qk+1
x ∈ ∂xL(xk+1, ŷk) = ∂xQ(xk+1, ŷk)+∇ f (xk+1) = ∇xq(xk+1, ŷk)+∂h(xk+1)+∇ f (xk+1).

It follows from (4.6) that

pk+1
x = ∇xq(xk+1,yk+1)−∇xq(xk+1, ŷk)+qk+1

x

∈ ∇xq(xk+1,yk+1)+∂h(xk+1)+∇ f (xk+1)

= ∂xQ(xk+1,yk+1)+∇ f (xk+1)

= ∂xL(zk+1).

(4.10)

Hence,

(pk+1
x , pk+1

y ) ∈ ∂xL(zk+1)×∂yL(zk+1)⊂ ∂L(zk+1).

Now, we estimate the norms of pk+1
x and pk+1

y . Under Assumption 4.1 (i) that L is coercive,
we deduce that {zk+1} is a bounded set. In view of Assumption 3.1 (ii) and (3.1), we have∥∥∥pk+1

x

∥∥∥≤ ‖∇xq(xk+1,yk+1)−∇xq(xk+1, ŷk)‖+
∥∥∥qk+1

x

∥∥∥
≤ ξ ‖yk+1− ŷk‖+‖∇ f (xk+1)−∇ f (x̂k)‖+

1
τk
‖∇φ1(x̂k)−∇φ1(xk+1)‖

≤ ξ ‖yk+1− ŷk‖+Lφ1L1 ‖xk+1− x̂k‖+
L1

τk
‖xk+1− x̂k‖

≤ ξ ‖yk+1− ŷk‖+L1

(
Lφ1 +

1
τ

)
‖xk+1− x̂k‖

and ∥∥∥pk+1
y

∥∥∥≤ ‖∇g(yk+1)−∇g(ŷk)‖+
1
σk
‖∇φ2(ŷk)−∇φ2(yk+1)‖

≤ Lφ2L2 ‖yk+1− ŷk‖+
L2

σk
‖yk+1− ŷk‖

≤ L2

(
Lφ2 +

1
σ

)
‖yk+1− ŷk‖ ,

and hence∥∥∥(pk+1
x , pk+1

y )
∥∥∥≤ ∥∥∥pk+1

x

∥∥∥+∥∥∥pk+1
y

∥∥∥
≤ L1

(
Lφ1 +

1
τ

)
‖xk+1− x̂k‖+

(
ξ +L2

(
Lφ2 +

1
σ

))
‖yk+1− ŷk‖

≤ ρ ‖zk+1− ẑk‖ ,

where ρ =
√

2max{L1

(
Lφ1 +

1
τ

)
,ξ +L2

(
Lφ2 +

1
σ

)
}. �

Below, we summarize some properties about cluster points and prove every cluster point of a
sequence generated by Algorithm 1 is the critical point of L. Let {zk} be the sequence generated
by Algorithm 1 with initial point z0. Under Assumption 4.1 (i) that L is coercive, we deduce



152 J. ZHAO, C. GUO

that {zk} is a bounded set, and it has at least one cluster point. The set of all cluster points is
denoted by Ω, i.e.,

Ω := {ẑ = (x̂, ŷ) ∈ Rn×Rm : ∃ strictly increasing
{

k j
}

j∈N such that zk j → ẑ, j→ ∞}.

Lemma 4.3. Let Assumption 3.1 and Assumption 4.1 hold. Let {zk} be a sequence generated
by Algorithm 1 with initial point z0. Then the following results hold.

(i) Ω is a nonempty compact set, and L is finite and constant on Ω;
(ii) Ω⊂ crit L;
(iii) limk→∞ dist(zk,Ω) = 0.

Proof. (i) The fact that {zk} is bounded yields the nonemptyness of Ω. In addition, Ω can be
reformulated as an intersection of compact sets Ω =

⋂
s∈N

⋃
k≥s zk, which illustrates that Ω is a

compact set.
For any ẑ = (x̂, ŷ) ∈ Ω, there exists a subsequence

{
zk j

}
such that lim j→∞ zk j = ẑ. Since L

is continuous, we have lim j→∞ L(zk j) = L(ẑ). According to Lemma 4.1, we see that {L(zk)}
converges to L∗ globally. Hence

lim
j→∞

L(zk j) = lim
k→∞

L(zk) = L(ẑ) = L∗. (4.11)

which means L is a constant on Ω.
(ii) Letting ẑ ∈ Ω, one sees that ∃ zk j such that zk j → ẑ. According to Lemma 4.1 (ii), one

obtain lim j→∞ ‖zk j− ẑk j−1‖= 0, and hence, lim j→∞ zk j = lim j→∞ ẑk j−1 = ẑ. By (4.7), one arrives
at ∥∥∥(pk j

x , pk j
y )
∥∥∥≤ ρ

∥∥∥zk j − ẑk j−1

∥∥∥ .
Thus (pk j

x , pk j
y )→ (0,0) as j→∞. Based on the result lim j→∞ L(zk j) = L(ẑ), (pk j

x , pk j
y )∈ ∂L(zk j)

and the closedness property of ∂L, we conclude that (0,0) ∈ ∂L(ẑ), which means ẑ = (x̂, ŷ) is a
critical point of L, and Ω⊂ crit L.

(iii) We prove the assertion by contradiction. Assume that limk→∞ dist(zk,Ω) 6= 0. Then,
there exists a subsequence {zkm} and a constant M > 0 such that

‖zkm− ẑ‖ ≥ dist(zkm,Ω)> M, ∀ẑ ∈Ω.

On the other hand, {zkm} is bounded and has a subsequence
{

zkm j

}
converging to a point in

Ω. Thus, lim j→∞ dist(zkm j
,Ω) = 0, which is a contradiction to (4.12). �

Now, we can prove the main convergence results of proposed algorithms under the KŁ prop-
erty.

Theorem 4.1. Let Assumptions 3.1 hold, and let {zk = (xk,yk)} and {ẑk = (x̂k, ŷk)} be the
bounded sequences generated by Algorithm 1 with initial point z0. Assume that L is KŁ function.
Then the following results hold:

(i) {zk} has finite length, i.e.,
∞

∑
k=1
‖zk+1− zk‖<+∞, (4.12)

(ii) {zk} converges to a critical point of L.
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Proof. In the process of our proof, we always assume L(zk) 6= L(z∗) for z∗ ∈ Ω. Otherwise,
there exists an integer k̂ such that L(zk̂) = L(z∗), so L(zk)≡ L(z∗) for k≥ k̂. For k≥ k̂, by (4.1),
we have

ρ ‖zk+1− ẑk‖2 ≤ L(zk)−L(zk+1)≤ L(zk̂)−L(z∗),

where the last inequality follows from the nonincreasing of L(·). Therefore, for any k ≥ k̂, we
have zk+1 = zk and the assertions (4.12) holds trivially.

(i) Since {L(zk)} is a nonincreasing sequence, we assume that L(zk) > L(z∗) for all k ≥ 1.
From (4.11), we find limk→∞ L(zk) = L(z∗). For any η > 0, there exists a positive integer k0
such that L(z∗)< L(zk)< L(z∗)+η for all k > k0. From Lemma 4.3 (iii), we have that, for any
ε > 0, there exists a positive integer k1 such that dist(zk,Ω) < ε for all k > k1. Consequently,
for any η , ε > 0, there exists a positive integer l = max{k0,k1} such that

dist(zk,Ω)< ε and L(z∗)< L(zk)< L(z∗)+η

for k > l. Since Ω is a nonempty and compact set, and L(·) is a constant on Ω, we can apply the
Lemma 2.2 with Ψ = Ω. Therefore, there exists a concave function ϕ ∈Φη such that

ϕ
′ (L(zk)−L(z∗))dist(0,∂L(zk))≥ 1, ∀k > l. (4.13)

From Lemma 4.2, we obtain that

dist(0,∂L(zk))≤
∥∥∥(pk

x, pk
y)
∥∥∥≤ ρ ‖zk− ẑk−1‖ . (4.14)

Substituting (4.14) into (4.13), we conclude

ϕ
′(L(zk)−L(z∗))≥ 1

dist(0,L(zk))
≥ 1

ρ ‖zk− ẑk−1‖
.

Now, we define4p,q = ϕ(L(zp)−L(z∗))−ϕ(L(zq)−L(z∗)). From the concavity of ϕ , we have

ϕ(L(zk+1)−L(z∗))≤ ϕ(L(zk)−L(z∗))+ϕ
′(L(zk)−L(z∗))(L(zk+1)−L(zk)).

According to the strongly convexity of φ1 and φ2 and (4.1), we have

L(zk)−L(zk+1)≥ ρ
[
Dφ1(xk+1, x̂k)+Dφ2(yk+1, ŷk)

]
≥ ρ ‖zk+1− ẑk‖2 ,

where ρ = ρ min
{

µφ1
2 ,

µφ2
2

}
. So (5.1) is equivalent to the following inequality

4k,k+1 ≥ ϕ
′(L(zk)−L(z∗))(L(zk+1)−L(zk))≥

ρ ‖zk+1− ẑk‖2

ρ ‖zk− ẑk−1‖
. (4.15)

Let C = ρ

ρ
. Then (4.15) can be simplified as ‖zk+1− ẑk‖2 ≤C4k,k+1‖zk− ẑk−1‖. Using the fact

that 2
√

ab≤ a+b for a,b≥ 0, we infer

2‖zk+1− ẑk‖ ≤C4k,k+1 +‖zk− ẑk−1‖ . (4.16)

Summing up (4.16) for k = l +1, . . . ,K yields

2
K

∑
k=l+1

‖zk+1− ẑk‖ ≤C4l+1,K+1 +‖zl+1− ẑl‖−‖zK+1− ẑK‖+
K

∑
k=l+1

‖zk+1− ẑk‖ .

Eliminating the same terms of the inequality, we have
K

∑
k=l+1

‖zk+1− ẑk‖ ≤C4l+1,K+1 +‖zl+1− ẑl‖−‖zK+1− ẑK‖< ∞.
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Letting K→∞, we see that ∑
K
k=l+1 ‖zk+1− ẑk‖< ∞. Note that zk+1− ẑk = (xk+1− x̂k,yk+1− ŷk)

and investigate the iterative point ẑk = (x̂k, ŷk) in Algorithm 1. If ẑk is generated by (3.3),
then zk+1− ẑk = zk+1− zk−αk(zk− zk−1)− βk(zk−1− zk−2). If ẑk is generated by (3.4), then
zk+1− ẑk = (xk+1− xk,yk+1− yk) = zk+1− zk. No matter how ẑk is generated, we always have

‖zk+1− ẑk‖ ≥ ‖zk+1− zk‖−αk ‖zk− zk−1‖−βk ‖zk−1− zk−2‖ . (4.17)

Summing up (4.17) for k = l +1, . . . ,K yields
K

∑
k=l+1

‖zk+1− zk‖−
K

∑
k=l+1

αk ‖zk− zk−1‖−
K

∑
k=l+1

βk ‖zk−1− zk−2‖ ≤
K

∑
k=l+1

‖zk+1− ẑk‖< ∞.

(4.18)
Note that αk ∈ [0,αmax] ,βk ∈ [0,βmax]. Letting α = supk {αk} ,β = supk {βk}, one has 0 ≤
α +β ≤ αmax +βmax < 1, and

K

∑
k=l+1

‖zk+1− zk‖−α

K

∑
k=l+1

‖zk− zk−1‖−β

K

∑
k=l+1

‖zk−1− zk−2‖

≤
K

∑
k=l+1

‖zk+1− zk‖−
K

∑
k=l+1

αk ‖zk− zk−1‖−
K

∑
k=l+1

βk ‖zk−1− zk−2‖ ,
(4.19)

and
K

∑
k=l+1

‖zk+1− zk‖−α

K

∑
k=l+1

‖zk− zk−1‖−β

K

∑
k=l+1

‖zk−1− zk−2‖

= (1−α−β )
K

∑
k=l+1

‖zk+1− zk‖− (α +β )(‖zl+1− zl‖−‖zK+1− zK‖)

−β (‖zl− zl−1‖−‖zK− zK−1‖).

(4.20)

Combining (4.18), (4.19), and (4.20), we have

(1−α−β )
K

∑
k=l+1

‖zk+1− zk‖

≤(α +β )(‖zl+1− zl‖−‖zK+1− zK‖)+β (‖zl− zl−1‖−‖zK− zK−1‖)+
K

∑
k=l+1

‖zk+1− zk‖

−
K

∑
k=l+1

αk ‖zk− zk−1‖−
K

∑
k=l+1

βk ‖zk−1− zk−2‖

≤(α +β )(‖zl+1− zl‖−‖zK+1− zK‖)+β (‖zl− zl−1‖−‖zK− zK−1‖)+
K

∑
k=l+1

‖zk+1− ẑk‖

<∞.

Taking the limit as K → ∞ and using the fact α + β < 1, we obtain ∑
∞
k=l+1 ‖zk+1− zk‖ < ∞,

which shows that ∑
∞
k=0 ‖zk+1− zk‖< ∞.

(ii) For any m > n, we have

‖zm− zn‖=

∥∥∥∥∥m−1

∑
k=n

(zk+1− zk)

∥∥∥∥∥≤ m−1

∑
k=n
‖zk+1− zk‖<

∞

∑
k=n
‖zk+1− zk‖ .
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Note that ‖zm− zn‖ → 0, which means that {zk} is a Cauchy sequence. Hence {zk} is a con-
vergent sequence. We also know that {zk} converges to a critical point of L from Lemma
4.3(ii). �

Since the KŁ property is also a very useful tool in establishing the convergence rate of first-
order methods. Based on the KŁ inequality, Attouch and Bolte [42] first established conver-
gence rate results which are related to the desingularizing function for proximal algorithms.
Similar to the derivation process of [42], we can obtain convergence rate results as following.

Theorem 4.2. (Convergence rate) Let Assumption 3.1 and 4.1 hold and let {zk} be a sequence
generated by Algorithm 1 with z0 = (x0,y0) as initial point. Assume that L is a KŁ function and
the desingularizing function has the form of ϕ(t) = C

θ
tθ with θ ∈ (0,1], C > 0. Let L∗ = L(z)

for all z ∈L (z0). Then the following assertions hold.
(i) If θ = 1, then Algorithm 1 terminates in finite steps.
(ii) If θ ∈ [1

2 ,1), then there exist ω > 0 and k0 ∈ N such that

L(zk)−L∗ ≤ O

(
exp
(
−ω

ρ

))
, ∀k > k0.

(iii) If θ ∈ (0, 1
2), then there exist ω > 0 and k0 ∈ N such that

L(zk)−L∗ ≤O

((
k− k0

ρ

) −1
1−2θ

)
, ∀k > k0.

The result is almost the same as it was mentioned in [40, 41]. We omit the proof here.

5. NUMERICAL EXPERIMENTS

We consider the Poisson linear inverse problems [1, 23], which can be conveniently described
as follows. Given a matrix A ∈Rm×n

+ modeling the experimental protocol, and b ∈Rm
+, the vec-

tor of measurement, the goal is to reconstruct the signal or image x ∈ Rn
+ from the noisy mea-

surement b such that Ax ' b. Moreover, since the dimension of x is often much larger than the
number of observations, there is a need to regularize the problem through an appropriate choice
of a regularizer freflecting desired features of the solution. Thus, given some adequate convex
proximity measure d(·, ·) that quantifies the “error” between b and Ax, the task of recovering x
can be represented as a minimize problem like

min
x

{
d(b,Ax)+λh(x) : x ∈ Rn

+

}
, (5.1)

where λ > 0 plays the role of a regularizing parameter controlling the trade-off between match-
ing the data fidelity criteria and the weight given to its regularizer.

By introducing an auxiliary variable y ∈ Rn
+, we can solve (5.1) approximately according to

the following optimization problem

min
x∈Rn

+, y∈Rn
f (x)+Q(x,y)+g(y) (5.2)

by defining

f (x) = d(b,Ax), g(y) = λh(y), Q(x,y) =
µ

2
‖x− y‖2 .

where λ is a positive penalization parameter.
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Based on model (5.2), we give two choices for the first component f (x) in the objective
function:

(i) Burg’s entropy: d(b,Ax) = ∑
m
i=1 {(Ax)i−bi log(Ax)i} .

It is easy to find that f (x) = d(b,Ax) has no globally Lipschitz continuous gradient [1],
but satisfies GL-samd condition with a generalized Bregman function called Burg’s entropy,
denoted as

ϕ1(x) =−
n

∑
j=1

logx j, domφ1 = Rn
++,

so the Bregman distance is now given by

Dϕ1(x,z) =
n

∑
j=1

{
x j

z j
− log

(
x j

z j

)
−1
}
,

and for any Lϕ1 satisfying Lϕ1 ≥ ‖b‖1 = ∑
m
i=1 bi, the function Lϕ1ϕ1− f is convex on Rn

+.
(ii) Boltzmann-Shannon entropy: d(b,Ax) = ∑

m
i=1 {(Ax)i log(Ax)i− (logbi +1)(Ax)i +bi} .

In this case, f (x) = d(b,Ax) also has no globally Lipschitz continuous gradient [1], but sat-
isfies GL-samd condition with a generalized Bregman function called Boltzmann-Shannon en-
tropy, denoted as

ϕ2(x) =
n

∑
j=1

x j logx j, domφ1 = Rn
++,

so the Bregman distance is now given by

Dϕ2(x,z) =
n

∑
j=1

{
x j log

(
x j

z j

)
+ z j− x j

}
,

and for any Lϕ2 satisfying Lϕ2 ≥max1≤ j≤n ∑
m
i=1 ai j, the function Lϕ2ϕ2− f is convex on Rn

+.
We consider Tikhonov regularization in model (5.2), i.e., the regularizer is g(y) = λh(y) =

λ

2 ‖y‖
2. Take Energy φ2(y) = 1

2 ‖y‖
2, which corresponding Bregman distance is Dφ2(y,z) =

1
2 ‖y− z‖2, and for any Lφ2 satisfying Lφ2 ≥ λ , the function Lφ2φ2−g is convex on Rn.

In numerical experiments, we set A = D+DT ∈Rn×n, where D is a matrix generated by i.i.d.
standard Gaussian entries. The vector b is also generated by i.i.d. standard Gaussian entries.
The parameters of the problem are set as λ = 1, Lϕ1 = ‖b‖1, Lϕ2 = max1≤ j≤n ∑

m
i=1 ai j, Lφ2 = λ

and the penalization parameter µ as large as the conditions permit, then we can set σ = 1
2λ

and
τ = 1

2Lϕi
(i = 1,2). We take m = n = 500 and select the starting point randomly, and use

Error =
‖xk− xk−1‖

max{1,‖xk‖}
≤ 10−6

as the stopping criteria. In the numerical results, “Iter.” denotes the number of iterations, “Time”
denotes the CPU time, “Extrapolation” records the number of taking extrapolation step, i.e.,
the number of adopting (3.3). In order to show the effectiveness of the proposed algorithms,
we compare Algorithm 1, Algorithm 2 with ASABP [23], IASABP [23] and aASAP [33] for
different Bregman distance. Note that, when αk ≡ βk ≡ 0, Algorithm 1 and Algorithm 2 corre-
spond to ASABP. The main parameters in IASABP are set as follows: η is a random number
between 0.90 and 0.95 and θ = 0.99; α0

k = β 0
k = 1 for all k. For aASAP, we take αk = 0.3. For

Algorithm 1, we set αk = 0.3 and βk = 0.2. And we also take extrapolation parameter dynam-
ically updating with αk = βk =

k−1
k+2 . Even if the theoretical bound of extrapolation parameter
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αk +βk with dynamically updating dost not permit to go beyond 1, for the convergence is also
obtained for this case with a better performance. For Algorithm 2, we set α0 = 0.3,β0 = 0.2
as the initial extrapolation parameter and t = 1.2,βmax = 0.499. We use “Alg. 1-i” and “Alg.
2-i” to denote Algorithm 1 and Algorithm 2 with φ1(x) = ϕi(x)(1≤ i≤ 2), respectively, where
extrapolation parameter αk = 0.3,βk = 0.2. We use “Alg. 1-i(F)” and “Alg. 2-i(F)” to denote
Algorithm 1 and Algorithm 2 with φ1(x) = ϕi(x)(1≤ i≤ 2), respectively, where extrapolation
parameter αk = βk =

k−1
k+2 .

In Table 1, we list the iterations, CPU time and extrapolation step of the above algorithm for
different Bregman distance. In Table 2, we report on more results for comparing the above al-
gorithms for m = 200 and n = 1000, the corresponding graphical results are displayed in Figure
2. In Figure 1, (a) and (b) reports the result of different extrapolation parameter, respectively,
(c) reports the result of different Bregman distance. It can be seen that the Burg’s entropy have
computational advantage than the Boltzmann-Shannon entropy for Algorithm 1 and Algorithm
2 in terms of number of iteration and CPU time. Compared with one-step extrapolation and
original algorithm, two-step extrapolation performs much better. It shows that Algorithm 2
with adaptive extrapolation parameters performs the best among all algorithms.

TABLE 1. Numerical results of different Bregman distance with different ex-
trapolation parameter (m = n = 500)

Burg’s entropy Boltzmann-Shannon entropy
Algorithm Iter. Time(s) Extrapolation Algorithm Iter. Time(s) Extrapolation
ASABP 109 0.2231 108 ASABP 117 0.2725 116
aASAP 98 0.1563 97 aASAP 100 0.1706 99
IASABP 89 0.1394 88 IASABP 94 0.1438 93
Alg. 1-1 58 0.0898 55 Alg. 1-2 76 0.1072 72
Alg. 2-1 18 0.0129 16 Alg. 2-2 19 0.0136 17
Alg. 1-1(F) 29 0.0156 24 Alg. 1-2(F) 35 0.0234 29

TABLE 2. Numerical results of different Bregman distance with different ex-
trapolation parameter (m = 200, n = 1000)

Burg’s entropy Boltzmann-Shannon entropy
Algorithm Iter. Time(s) Extrapolation Algorithm Iter. Time(s) Extrapolation
ASABP 120 0.3975 119 ASABP 129 0.3827 128
aASAP 105 0.2013 104 aASAP 113 0.2236 112
IASABP 98 0.1892 97 IASABP 116 0.2578 115
Alg. 1-1 76 0.1196 73 Alg. 1-2 93 0.1508 88
Alg. 2-1 25 0.0172 22 Alg. 2-2 37 0.0278 35
Alg. 1-1(F) 45 0.0632 40 Alg. 1-2(F) 51 0.0713 45
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FIGURE 1. The value of ‖xk−xk−1‖
max{1,‖xk‖}

versus the iteration numbers for different
Bregman distance with different extrapolation parameter (m = n = 500).

6. CONCLUSION

In this paper, we introduced a two-step inertial Bregman alternating structure-adapted proxi-
mal gradient descent algorithm for solving a nonconvex and nonsmooth nonseparable optimiza-
tion problem. Under some assumptions, we proved that our algorithm is a descent method in
sense of objective function values, and every cluster point is a critical point of the objective
function. The convergence of the proposed algorithm is proved by assuming that the underly-
ing function satisfies the Kurdyka–Łojasiewicz property yet without the Lipschitz smoothness,
Furthermore, if the desingularizing function has the special form, we also established the linear
and sub-linear convergence rates of the function value sequence generated by the algorithm.
In numerical experiments, based on different Bregman distance, we investigated Poisson linear
inverse problems. Numerical results are reported to support the effectiveness of the proposed
algorithm.
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FIGURE 2. The value of ‖xk−xk−1‖
max{1,‖xk‖}

versus the iteration numbers for different
Bregman distance with different extrapolation parameter (m = 200, n = 1000).

REFERENCES

[1] H. Bauschke, J. Bolte, M. Teboulle, A descent lemma beyond Lipschitz gradient continuity: first-order meth-
ods revisited and applications, Math. Oper. Res. 42 (2016), 330-348.
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[26] R. I. Boţ, E.R. Csetnek, An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimiza-
tion problems, J. Optim. Theory Appl. 171 (2016), 600-616.

[27] B. Tan, X. Qin, On relaxed inertial projection and contraction algorithms for solving monotone inclusion
problems, Adv. Comput. Math. 50 (2024), 59.

[28] X. Qin, An inertial Krasnosel’skiı̆-Mann iterative algorithm for accretive and nonexnpansive mappings, J.
Nonlinear Convex Anal. 26 (2025), 407-414.

[29] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math.
Math. Phys. 4 (1964), 1-17.

[30] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a
nonlinear oscillator with damping, Set-Valued Anal. 9 (2001), 3-11.

[31] T. Pock, S. Sabach, Inertial proximal alternating linearized minimization (iPALM) for nonconvex and non-
smooth problems, SIAM J. Imaging Sci. 9 (2017), 1756-1787.

[32] X. Gao, X. Cai, D. Han , A Gauss-Seidel type inertial proximal alternating linearized minimization for a class
of nonconvex optimization problems, J. Glob. Optim. 76 (2020), 863-887.

[33] X. Yang, L. Xu, Some accelerated alternating proximal gradient algorithms for a class of nonconvex non-
smooth problems, J. Glob. Optim. 87 (2023), 939-964.

[34] J. Zhao, Q.L. Dong, T.R. Michael, F. Wang, Two-step inertial Bregman alternating minimization algorithm
for nonconvex and nonsmooth problems, J. Glob. Optim. 84 (2022), 941-966.

[35] M. Chao, F. Nong, M. Zhao, An inertial alternating minimization with Bregman distance for a class of
nonconvex and nonsmooth problems, J. Appl. Math. Comput. 69 (2023), 1559-1581.

[36] B. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory. Grundlehren der
Mathematischen Wissenschaften, Vol. 330. Springer-Verlag, Berlin, 2006.

[37] R.T. Rockafellar, J.B. Wets, Variational Analysis, Springer, New York, 1998.
[38] F. Wang, W. Cao, Z. Xu, Convergence of multi-block Bregman ADMM for nonconvex composite problems,

Sci. China Inf. Sci. 61 (2018), 122101.
[39] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice hall,

Englewood Cliffs, NJ, 1989.
[40] H. Li, Z. Lin, Accelerated proximal gradient methods for nonconvex programming, In: Advances in Neural

Information Processing Systems, pp. 379-387, 2015.



BREGMAN ALTERNATING STRUCTURE-ADAPTED PROXIMAL GRADIENT DESCENT ALGORITHM 161

[41] Q. Li, Y. Zhou, Y. Liang, P.K. Varshney, Convergence analysis of proximal gradient with momentum for
nonconvex optimization. In: Proceedings of the 34th International Conference on Machine Learning, pp.
2111-2119, 2017.

[42] H. Attouch, J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving ana-
lytic features, Math. Program. Ser. B, 116 (2009), 5-16.


	1. Introduction
	2. Preliminaries
	2.1. Subdifferentials
	2.2. The Kurdyka–Łojasiewicz property
	2.3. Generalized Bregman function and Bregman distance
	2.4. Generalized L-smooth adaptable and extended descent lemma

	3. Two-step Inertial Bregman ASAP Algorithm
	4. Convergence Analysis
	5. Numerical Experiments
	6. Conclusion
	References

