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Abstract. The present investigation in Geometric Function Theory of Complex Analysis is essentially
motivated by the importance and usefulness of the coefficient bounds and the coefficient estimates for
functions belonging to several analytic and univalent (and bi-univalent) function classes, such as the
classes of starlike and convex functions as well as their bi-univalent associates. In this paper, the coeffi-
cient bounds are determined for the moduli |a2|, |a3|, and |a4| of the initial Taylor-Maclaurin coefficients
a2, a3, and a4 for some normalized analytic and bi-univalent functions where the functions and their in-
verses belong to distinct subclasses of analytic and bi-univalent functions. The these coefficient estimates
are obtained by applying the familiar bound for the initial coefficient of the Carathéodory functions.
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let A denote the family of functions f (z) represented by the following Taylor-Maclaurin
series:

f (z) = z+
∞

∑
n=2

anzn, (1.1)

which are normalized by the conditions f (0)= 0 and f ′(0)= 1 and analytic in the open unit disk
U= {z : z ∈ C and |z|< 1} . A function f ∈A is said to be univalent in U if f (z) is one-to-
one in U. As usual, we denote by S the subclass of functions in A which are univalent in U.
On the other hand, a function f in S is called starlike of order α (05 α < 1), denoted by f ∈
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S ∗(α), if ℜ

(
z f ′(z)
f (z)

)
>α (z∈U). A function f in S is called convex of order α (05α < 1),

denoted by f ∈K (α), if ℜ

(
1+ z f ′′(z)

f ′(z)

)
> α (z ∈ U). As usual, we write S ∗(0) =: S ∗ and

K (0) =: K for the classes of starlike and convex functions, respectively.
The class of δ -convex functions, denoted by M (δ ) (05 δ 5 1), was introduced by Mocanu

[18] as follows:

ℜ

(
(1−δ )

(
z f ′(z)
f (z)

)
+δ

(
1+

z f ′′(z)
f ′(z)

))
> 0 (z ∈ U).

We note that all δ -convex functions are univalent and starlike. In particular, M (0) ≡S ∗ and
M (1)≡K (see also [16]). We note also that the extended class of δ -convex functions of order
β for 1 < β < 1 and (−∞ < δ < ∞) was introduced and studied by Fukui et al. [9]. For each
f ∈S , there exists an inverse function f−1 in some neighborhood of the origin. In accordance
with the one-quarter theorem in [8], we can define f−1 in a neighborhood of the origin that
contains a disk with a radius of 1

4 , which includes the disk |z| < 1
4 . In some cases, f−1 can be

extended to the whole open disk U. A function f ∈ S has an inverse f−1, which is also an
univalent function and defined by f−1( f (z)

)
= z, z ∈ U and f

(
f−1(w)

)
= w, w ∈ range of f .

Moreover, the function f−1(w) has the Taylor-Maclaurin series expansion of the form:

g(w) = f−1(w) = w+
∞

∑
n=2

bnwn (|w|< r0( f ),r0( f )=
1
4
). (1.2)

For initial values of n, one can easily see b2 =−a2, b3 = 2a2
2−a3, b4 = 5a2a3−5a3

2−a4, and
so on.

The function f ∈A is said to be bi-univalent in U if f ∈S and f−1 has univalent analytic
continuation to the disk U. Let Σ denote the class of bi-univalent analytic functions in U of the
form (1.1). Lewin [13] investigated the class Σ of bi-univalent analytic functions and demon-
strated that the inequality |a2| 5 1.51 is satisfied by the second coefficient of each f ∈ Σ. Let
Σ1 be the class all functions f = φ ◦ψ−1, where φ and ψ map U onto a domain containing U
and φ ′(0) = ψ ′(0). A function in Σ1 ⊂ Σ that satisfies a2 = 4/3 was provided by Suffridge [33],
who also conjectured that |a2|5 4/3 for all functions in Σ. For the subclass Σ1, Netanyahu [19]
refuted this conjecture in 1969. In 1981, Styer and Wright [32] proved that a2 > 4/3 for some
function in Σ, thereby refuting Suffridge’s conjecture. For another example demonstrating that
Σ 6= Σ1, we refer to [7]. Smith [21] and Kedzierawski and Waniurski [12] derived results on bi-
univalent polynomials. For f ∈ Σ, Brannan and Clunie [5] conjectured in 1967 that |a2|5

√
2.

Kedzierawski [11, Theorem 2] proved this conjecture for a special case where the functions f
and f−1 are starlike functions. The bound |a2| 5 1.485 found by Tan [35] happens to be the
best estimate currently available for functions in the class Σ; see [10] and [22] for a survey and
a list of the related open problems.

Kedzierawski [11] established the following results in 1985:

|a2|5


1.5894

(
f ∈S ; f−1 ∈S

)
,√

2
(

f ∈S ∗; f−1 ∈S ∗) ,
1.507

(
f ∈S ∗; f−1 ∈S

)
,

1.224
(

f ∈K ; f−1 ∈S
)
,
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where S ∗ and K denote the classes of starlike and convex functions in S .
A brief history of the developments regarding the function class Σ can be found in the pio-

neering work by Srivastava et al. [29] which apparently revived the study of the analytic and
bi-univalent function class Σ. One can find outstanding works various subclasses of the analytic
and bi-univalent function class Σ in, for example, [6, 15, 20, 23, 24, 25, 26, 27, 28, 30, 31, 34,
36]. In the class S ∗

Σ
(β ) for 0 5 β < 1, there exists a function f ∈ Σ of bi-starlike function of

order β , or KΣ(β ) of bi-convex function of order β if both f and f−1 are starlike or convex
functions of order β , respectively. Function f ∈ Σ for 0 < α 5 1 belongs to the class S ∗,α

Σ

of strongly bi-starlike functions of order α, or K α
Σ

of strongly bi-convex functions of order α

if both f and f−1 are, respectively, strongly starlike or strongly convex functions of order α .
Brannan and Taha [6] introduced and analyzed these classes and estimated the initial coeffi-
cients a2 and a3 for functions in these classes. In this connection, Kumar et al. [15] derived the
following results similar to those of Kedezierawski [11]:

|a2|5

{
0.867 ( f ∈K ; f−1 ∈ C )

1.054 ( f ∈S ∗; f−1 ∈ C )

and

|a3|5

{
0.833 ( f ∈K ; f−1 ∈ C )

1.56 ( f ∈S ∗; f−1 ∈ C ),

where S ∗, K , and C denote, respectively, the classes of starlike, convex, and close-to-convex
functions in S .

The works of Kedezierawski [11] and Kumar et al. [15] incite us to estimate the bounds on
the coefficients a2,a3, and a4 when f is in some subclasses of the class of univalent functions
and its inverse f−1 is in some other subclasses of univalent functions.

Each of the following definitions is needed to prove our present investigation.

Definition 1.1. (see [6]) A function f ∈A is said to be in the class S ∗
Σ
(η) (05 η < 1) if f ∈ Σ

and ℜ

(
z f ′(z)
f (z)

)
> η , z ∈ U and ℜ

(
wg′(w)
g(w)

)
> η , w ∈ U, where g is the analytic continuation of

f−1 to U.

Definition 1.2. (see [6]) A function f ∈ A is said to be in the class KΣ(η) (0 5 η < 1) if
f ∈ Σ and ℜ

(
1+ z f ′′(z)

f ′(z)

)
> η , z ∈ U, and ℜ

(
1+ wg′′(w)

g′(w)

)
> η , w ∈ U, where g is the analytic

continuation of f−1 to U.

Definition 1.3. (see [14]) A function f ∈ A is said to be in the following class: MΣ(δ ,η),
05 η < 1, 05 δ 5 1), if

f ∈ Σ and ℜ

(
(1−δ )

(
z f ′(z)
f (z)

)
+δ

(
1+

z f ′′(z)
f ′(z)

))
> η (z ∈ U)

and

ℜ

(
(1−δ )

(
wg′(w)
g(w)

)
+δ

(
1+

wg′′(w)
g′(w)

))
> η (w ∈ U),

where g is the analytic continuation of f−1 to U.
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We also need the class P of analytic functions p(z) of the form: p(z) = 1+∑
∞
k=1 ckzk, z ∈ U

and satisfying ℜ(p(z))> 0. The class P is popularly named after Carathéodory.
Motivated by the earlier works of Srivastava et al. [29] and Kumar et al. [15], we, in this

paper, obtain estimates on initial coefficients a2,a3, and a4 for the functions of the class Σ when
f is in some subclasses of univalent functions and f−1 is in some other subclasses of univalent
functions.

Analytic and bi-univalent function classes are the main topic of this study. The fundamental
concepts of some of these function classes are provided by our paper structure, which is dis-
played in Section 1. Section 2 presents the statements and proofs of Theorem 2.1 if f ∈S ∗

Σ
(η)

and g ∈MΣ(δ ,η) and Theorem 2.2 if f ∈KΣ(η) and g ∈MΣ(δ ,η). Applications of the the-
orems to classical subclasses of the class Σ are also found in Section 2 (see Corollaries 2.1,
2.2, and 2.3, and Remark 2.1). Section 3 presents the proofs of Theorem 3.1 if f ∈S ∗,γ

Σ
and

g ∈M γ

Σ
(δ ) and Theorem 3.2 if f ∈K γ

Σ
and g ∈M γ

Σ
(δ ). Applications of the theorems to clas-

sical subclasses of the class Σ are also included in Section 3 (see Corollaries 3.1, 3.2, and 3.3,
and Remark 3.1). Finally, in Section 4, we present the concluding remarks and observations
pertaining to our investigation.

2. COEFFICIENT ESTIMATES FOR THE CLASSES S ∗
Σ
(η) AND KΣ(η) WITH MΣ(δ ,η)

In this section, we first prove the results for function f ∈S ∗
Σ
(η) and the inverse of function

g ∈MΣ(δ ,η) (0 5 η < 1;0 5 δ 5 1). We also derive the consequences of the results of the
following theorem for particular choices of the parameter δ .

Theorem 2.1. Let the functions f and g, given by (1.1) and (1.2), respectively, be in the class
Σ. If f ∈S ∗

Σ
(η) and g ∈MΣ(δ ,η), 05 η < 1 and 05 δ 5 1), then

|a2|5

(1−η)
√

4(1+δ )
(2+3δ )(1−η)

(
05 η 5 1

2

)
,

(1−η)
√

8(1+δ )
(2+3δ )

(1
2 5 η < 1

)
,

(2.1)

|a3|5
(1−η)(4+5δ )

2+3δ
(2.2)

and

|a4|5


2(1−η)

3 + (1−η)2(8+14δ )
3(2+3δ )

√
4(1+δ )

(1−η)(2+3δ )

(
05 η 5 1

2

)
,

2(1−η)
3 + (1−η)2(8+14δ )

3(2+3δ )

√
8(1+δ )
(2+3δ )

(1
2 5 η < 1

)
.

(2.3)

Proof. Let the function f ∈ Σ be a member of the class S ∗
Σ
(η) and suppose that the function

g∈ Σ is in the class MΣ(δ ,η) (05 η < 1;05 δ 5 1). Then, by Definition 1.1 and 1.3, we have

z f ′(z)
f (z)

= η +(1−η)p(z) (z ∈ U) (2.4)

and

(1−δ )

(
wg′(w)
g(w)

)
+δ

(
1+

wg′′(w)
g′(w)

)
= η +(1−η)q(w) (w ∈ U), (2.5)

where p and q are members of the Carathéodory class P and have the following forms:

p(z) = 1+ c1z+ c2z2 + c3z3 + · · · (z ∈ U) (2.6)
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and
q(w) = 1+d1w+d2w2 +d3w3 + · · · (w ∈ U). (2.7)

Now, by equating the coefficients of (2.4), we have

a2 = (1−η)c1, (2.8)

2a3−a2
2 = (1−η)c2, (2.9)

and
3a4−3a2a3 +a3

2 = (1−η)c3. (2.10)
Similarly, a comparison of the coefficients of both sides of (2.5) yields

− (1+δ )a2 = (1−η)d1, (2.11)

(3+5δ )a2
2− (2+4δ )a3 = (1−η)d2, (2.12)

and
− (10+22δ )a3

2 +(12+30δ )a2a3− (3+9δ )a4 = (1−η)d3. (2.13)

From (2.8) and (2.11), it is clear that c1 =− d1
1+δ

.

We first obtain refined estimates on |c1| by using the above relations. For this purpose, we
add (2.9) with (2.12) to see that

(2+3δ )a2
2 = (1−η)[(1+2δ )c2 +d2]. (2.14)

On substituting a2 = (1−η)c1 in the above relation, we see after simplification:

c2
1 =

(1+2δ )c2 +d2

(2+3δ )(1−η)
. (2.15)

By applying the inequalities |c2|5 2 and |d2|5 2, the relation (2.15) gives the following refined
estimates:

|c1|5


√

4(1+δ )
(2+3δ )(1−η)

(
05 η 5 1

2

)
,√

8(1+δ )
(2+3δ )

(1
2 5 η < 1

)
.

(2.16)

Using the estimate (2.16) in (2.8), we find that

|a2|5

(1−η)
√

4(1+δ )
(2+3δ )(1−η)

(
05 η 5 1

2

)
(1−η)

√
8(1+δ )
(2+3δ )

(1
2 5 η < 1

) ,
which is precisely our estimate in (2.1). In order to find bounds on |a3|, we subtract (2.12) from
(2.9) and obtain

(4+8δ )a3 = (4+7δ )a2
2 +(1−η)[(1+2δ )c2−d2].

Using a2
2 from (2.14) in the above equation, we find after simplification that

a3 =
1−η

2(2+3δ )
[(3+5δ )c2 +d2]. (2.17)

By applying the triangle inequality and the well-known estimates |c2|5 2 and |d2|5 2 in (2.17),
we have

|a3|5
(1−η)(4+5δ )

2+3δ
,

which is precisely our estimate in (2.2).
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Next, adding (2.13) and (2.10), we have

(9+21δ )a2a3− (9+19δ )a3
2 = (1−η)[(1+3δ )c3 +d3]. (2.18)

We now find estimates on |a4|. We express a4 in terms of the first three coefficients of the
functions p and q. Subtracting (2.13) from (2.10), we arrive at

6(1+3δ )a4 = (15+39δ )a2a3− (11+25δ )a3
2 +(1−η)[(1+3δ )c3−d3]

= (9+21δ )a2a3− (9+19δ )a3
2 +(6+18δ )a2a3− (2+6δ )a3

2

+(1−η)[(1+3δ )c3−d3].

By using (2.8), (2.17) and, (2.18), we obtain

a4 =
1−η

3
c3−

(1−η)3

3
c3

1 +
(1−η)2c1

2(2+3δ )
[(3+5δ )c2 +d2].

On replacing c2
1, the above relation reduces to

a4 =
1−η

3
c3 +

(1−η)2(7+11δ )

6(2+3δ )
c1c2 +

(1−η)2

6(2+3δ )
c1d2. (2.19)

By applying the usual estimates |c2| 5 2, |c3| 5 2, |d2| 5 2 and the refined estimate (2.16) for
|c1| in (2.19), conclude

|a4|5
1−η

3
|c3|+

(1−η)2(7+11δ )

6(2+3δ )
|c1| · |c2|+

(1−η)2

6(2+3δ )
|c1| · |d2|

5


2(1−η)

3 + (1−η)2(8+11δ )
3(2+3δ )

√
4(1+δ )

(1−η)(2+3δ ) (05 η 5 1
2)

2(1−η)
3 + (1−η)2(8+11δ )

3(2+3δ )

√
8(1+δ )
(2+3δ )

(1
2 5 η < 1

)
,

which is precisely our assertion in (2.3). Thus the proof of Theorem 2.1 is complete. �

Taking δ = 1 in Theorem 2.1, we have the following results.

Corollary 2.1. Let the functions f and g, given by (1.1) and (1.2), respectively, be in the class
Σ. If f ∈S ∗

Σ
(η) and g ∈MΣ(1,η) := KΣ(η), 05 η < 1, then

|a2|5

(1−η)
√

8
5(1−η)

(
05 η 5 1

2

)
(1−η)

√
16
5

(1
2 5 η < 1

) ,
|a3|5 9(1−η)

5 and

|a4|5


2(1−η)

3 + 22(1−η)2

15

√
8

5(1−η)

(
05 η 5 1

2

)
2(1−η)

3 + 22(1−η)2

15

√
16
5

(1
2 5 η < 1

)
.

Remark 2.1. By setting δ = 0 in Theorem 2.1, we have a known result given by Mishra and
Soren [17, Theorem 2.2].

We next demonstrate the results for the function f ∈KΣ(η) and the inverse of the function
g ∈MΣ(δ ,η), 05 η < 1 and 05 δ 5 1.
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Theorem 2.2. Let the functions f and g, given by (1.1) and (1.2), respectively, be in the class
Σ. If f ∈KΣ(η) and g ∈MΣ(δ ,η), 05 η < 1 and 05 δ 5 1, then

|a2|5

2(1−η)
√

2+δ

(1−η)(5+7δ )

(
05 η 5 1

2

)
,

2(1−η)
√

2(2+δ )
(5+7δ )

(1
2 5 η < 1

)
,

(2.20)

|a3|5
(1−η)(7+5δ )

5+7δ
(2.21)

and

|a4|5


1−η

6 + (1−η)2(31+29δ )
3(5+7δ )

√
2+δ

(1−η)(5+7δ )

(
05 η 5 1

2

)
,

1−η

6 + (1−η)2(31+29δ )
3(5+7δ )

√
2(2+δ )
(5+7δ )

(1
2 5 η < 1

)
.

Proof. Let the function f ∈ Σ be in the class KΣ(η) and let the function g ∈ Σ be in MΣ(δ ,η),
05 η < 1 and 05 δ 5 1. By Definitions 1.2 and 1.3, we have

1+
z f ′′(z)
f ′(z)

= η +(1−η)p(z) (z ∈ U) (2.22)

and

(1−δ )

(
wg′(w)
g(w)

)
+δ

(
1+

wg′′(w)
g′(w)

)
= η +(1−η)q(w) (w ∈ U),

where p and q are members of the Carathéodory class P , given in (2.6) and (2.7), respectively.
Equating the coefficients of (2.22) yields

2a2 = (1−η)c1, (2.23)

6a3−4a2
2 = (1−η)c2, (2.24)

and
12a4−18a2a3 +8a3

2 = (1−η)c3. (2.25)

From (2.11) and (2.23), it is clear that c1 = − 2d1
1+δ

. We first obtain refined estimates on |c1| by
using the above relations. For this purpose, adding (2.12) to (2.23), we have

(5+7δ )a2
2 = (1−η)[(1+2δ )c2 +3d2]. (2.26)

On substituting a2 from (2.23) in the above relation, we find after simplification that

c2
1 =

4[(1+2δ )c2 +3d2]

(1−η)(5+7δ )
. (2.27)

By applying the inequalities |c2|5 2 and |d2|5 2, relation (2.27) gives

|c1|5


√

16(2+δ )
(1−η)(5+7δ )

(
05 η 5 1

2

)
,√

32(2+δ )
(5+7δ )

(1
2 5 η < 1

)
.

(2.28)

Using estimate (2.28) in (2.23), we find

|a2|5

2(1−η)
√

2+δ

(1−η)(5+7δ )

(
05 η 5 1

2

)
,

2(1−η)
√

2(2+δ )
(5+7δ )

(1
2 5 η < 1

)
,

which is precisely our estimate in (2.20).
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In order to find a bounds on |a3|, subtracting (2.12) from (2.24), we obtain

12(1+2δ )a3 = (13+23δ )a2
2 +(1−η)[(1+2δ )c2−3d2].

Using a2
2 from (2.26) in the above equation, we find after simplification that

a3 = (1−η)

[
3+5δ

2(5+7δ )
c2 +

2
5+7δ

d2

]
. (2.29)

By applying the triangle inequality and the well-known estimates |c2|5 2 and |d2|5 2 in (2.29),
we obtain |a3|5 (1−η)(7+5δ )

5+7δ
, which is precisely our estimate in (2.21).

Next, we add (2.25) and (2.13) to get

(30+66δ )a2a3− (32+64δ )a3
2 = (1−η)[(1+3δ )c3 +4d3]. (2.30)

We now find estimates on |a4| by first expressing a4 in terms of the first three coefficients of p
and q. Subtracting (2.13) from (2.25), we obtain

24(1+3δ )a4 = (66+174δ )a2a3− (48+112δ )a3
2 +(1−η)[(1+3δ )c3−4d3]

= (30+66δ )a2a3− (32+64δ )a3
2 +(36+108δ )a2a3− (16+48δ )a3

2

+(1−η)[(1+3δ )c3−4d3].

Using (2.23), (2.29), and (2.30), we thus have

a4 =
1−η

12
c3−

(1−η)3c3
1

12
+

3(1−η)2c1

8(5+7δ )
[(3+5δ )c2 +4d2] .

On replacing c2
1 from (2.27), the above relation reduces to

a4 =
1−η

12
c3 +

(1−η)2(19+29δ )

24(5+7δ )
c1c2 +

(1−η)2

2(5+7δ )
c1d2. (2.31)

By applying the usual estimates |c2|5 2, |c3|5 2 and |d2|5 2, and the refined estimate (2.28)
for |c1| in (2.31), we get

|a4|5
1−η

12
|c3|+

(1−η)2(19+29δ )

24(5+7δ )
|c1| · |c2|+

(1−η)2

2(5+7δ )
|c1| · |d2|

5


1−η

6 + (1−η)2(31+29δ )
3(5+7δ )

√
2+δ

(1−η)(5+7δ )

(
05 η 5 1

2

)
,

1−η

6 + (1−η)2(31+29δ )
3(5+7δ )

√
2(2+δ )
(5+7δ )

(1
2 5 η < 1

)
,

which is precisely our assertion in (2.3). Thus, the proof of the Theorem 2.2 is complete. �

The implications of Theorem 2.1, with specifically chosen the values of δ , yield the following
results. For example, by taking δ = 1 in Theorem 2.2, we have Corollary 2.2.

Corollary 2.2. Let the functions f and g given by (1.1) and (1.2), respectively, be in the class
Σ. If f ∈KΣ(η) and g ∈MΣ(1,η) := KΣ(η), 05 η < 1, then

|a2|5

2(1−η)
√

1
3(1−η)

(
05 η 5 1

2

)
2(1−η)

√
2
3

(1
2 5 η < 1

)
,
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|a3|5 1−η and

|a4|5


1−η

6 + 5(1−η)2

3

√
1

3(1−η)

(
05 η 5 1

2

)
1−η

6 + 5(1−η)2

3

√
2
3

(1
2 5 η < 1

)
.

Upon setting δ = 0 in Theorem 2.2, we have the following results.

Corollary 2.3. Let the functions f and g given by (1.1) and (1.2), respectively, be in the class
Σ. If f ∈KΣ(η) and g ∈MΣ(0,η) := S ∗

Σ
(η), 05 η < 1, then

|a2|5

2(1−η)
√

2
5(1−η)

(
05 η 5 1

2

)
,

2(1−η)
√

4
5

(1
2 5 η < 1

)
,

|a3|5 7(1−η)
5 and

|a4|5


1−η

6 + 31(1−η)2

15

√
2

5(1−η)

(
05 η 5 1

2

)
,

1−η

6 + 31(1−η)2

15

√
4
5

(1
2 5 η < 1

)
.

3. COEFFICIENT ESTIMATES FOR THE CLASSES S ∗,γ
Σ

AND K γ

Σ
WITH M γ

Σ
(δ )

This section demonstrates our findings by using each of the following definitions.

Definition 3.1. (see [6]) A function f ∈ A is said to be in the class S ∗,γ
Σ

(0 < γ 5 1) if

f ∈ Σ and
∣∣∣arg

(
z f ′(z)
f (z)

)∣∣∣ < γπ

2 , z ∈ U and
∣∣∣arg

(
wg′(w)
g(w)

)∣∣∣ < γπ

2 , w ∈ U, where g is the analytic

continuation of f−1 to U.

Definition 3.2. (see [6]) A function f ∈A is said to be in the class K γ

Σ
(0 < γ 5 1) if f ∈ Σ

and
∣∣∣arg

(
1+ z f ′′(z)

f ′(z)

)∣∣∣< γπ

2 , z ∈ U and
∣∣∣arg

(
1+ wg′′(w)

g′(w)

)∣∣∣< γπ

2 , w ∈ U, where g is the analytic

continuation of f−1 to U.

Definition 3.3. (see [14]) A function f ∈A is said to be in M γ

Σ
(δ ), 0 < γ 5 1 and 05 δ 5 1,

if

f ∈ Σ and

∣∣∣∣∣arg

(
(1−δ )

(
z f ′(z)
f (z)

)
+δ

(
1+

z f ′′(z)
f ′(z)

))∣∣∣∣∣< γπ

2
(z ∈ U)

and ∣∣∣∣∣arg

(
(1−δ )

(
wg′(w)
g(w)

)
+δ

(
1+

wg′′(w)
g′(w)

))∣∣∣∣∣< γπ

2
(w ∈ U),

where g is the analytic continuation of f−1 to U.

We will now prove the result for the function f ∈S ∗,γ
Σ

and the inverse of the function g ∈
M γ

Σ
(δ ) (0 < γ 5 1;05 δ 5 1). We then derived the consequences of the result of the following

theorem, particularly values of δ .
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Theorem 3.1. Let the functions f and g given by (2.1) and (2.2), respectively, be in the class
Σ. If f ∈S ∗,γ

Σ
and g ∈M γ

Σ
(δ ) (0 < γ 5 1;05 δ 5 1), then

|a2| 5 2γ

√
2+2δ

γ(2+2δ −δ 2)+(2+4δ +δ 2)
, (3.1)

|a3| 5
(8+8δ −δ 2)γ2 +(2δ +δ 2)γ

(2+2δ −δ 2)γ +(2+4δ +δ 2)
(3.2)

and

|a4|5
2γ

3
+2

(64+64δ −15δ 2)γ3 +(−12+18δ +21δ 2)γ2− (4+16δ +6δ 2)γ

9[(2+2δ −δ 2)γ +(2+4δ +δ 2)]

·

√
2+2δ

γ(2+2δ −δ 2)+(2+4δ +δ 2)
. (3.3)

Proof. Let the functions f ∈ Σ and g ∈ Σ be in the classes S ∗,γ
Σ

(0 < γ 5 1) and M γ

Σ
(δ ) (0 <

γ 5 1;05 δ 5 1), respectively. Then, by Definition 3.1 and 3.3, we have

z f ′(z)
f (z)

= [p(z)]γ (z ∈ U) (3.4)

and

(1−δ )

(
wg′(w)
g(w)

)
+δ

(
1+

wg′′(w)
g′(w)

)
= [q(z)]γ (w ∈ U), (3.5)

where p and q are members of the Carathéodory class P and are given by (2.6) and (2.7),
respectively. Equating the coefficients of (3.4), we have

a2 = γc1, (3.6)

−a2
2 +2a3 = γc2 +

γ(γ−1)
2

c2
1 (3.7)

and

a3
2−3a2a3 +3a4 = γc3 + γ(γ−1)c1c2 +

γ(γ−1)(γ−2)
6

c3
1. (3.8)

Similarly, a comparison of the coefficients of both sides of (3.5) yields

− (1+δ )a2 = γd1, (3.9)

(3+5δ )a2
2− (2+4δ )a3 = γd2 +

γ(γ−1)
2

d2
1 , (3.10)

and

− (10+22δ )a3
2 +(12+30δ )a2a3− (3+9δ )a4

= γd3 + γ(γ−1)d1d2 +
γ(γ−1)(γ−2)

6
d3

1 . (3.11)

From (3.6) and (3.9), it is clearly seen that

c1 =−
d1

1+δ
. (3.12)
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We first obtain refined estimates on |c1| by using the above relations. For this purpose, we
solve the equation (3.7) and (3.10) to see

(2+3δ )a2
2 = γ[(1+2δ )c2 +d2]+

γ(γ−1)
2

[(1+2δ )c2
1 +d2

1 ]. (3.13)

Using a2 = γc1 and d2
1 = (1+δ )2c2

1 in (3.13), we have the following relation:

c2
1 =

2[(1+2δ )c2 +d2]

γ(2+2δ −δ 2)+(2+4δ +δ 2)
. (3.14)

Relation (3.14) also gives the following refined estimates:

|c1|5 2

√
2+2δ

γ(2+2δ −δ 2)+(2+4δ +δ 2)
. (3.15)

Using the estimate (3.15) in (3.6), we obtain

|a2| 5 2γ

√
2+2δ

γ(2+2δ −δ 2)+(2+4δ +δ 2)
,

which is precisely our estimate in (3.1). In order to find bounds on |a3|, solving (3.7) and (3.10)
yields

4(1+2δ )a3 = (4+7δ )a2
2 + γ[(1+2δ )c2−d2]+

γ(γ−1)
2

[(1+2δ )c2
1−d2

1 ].

Using d2
1 = (1+δ )2c2

1 from (3.12), a2 = γc1 from (3.6) and

c2
1 =

2[(1+δ )c2 +d2]

γ(2+2δ −δ 2)+(2+4δ +δ 2)

in the above equation, we find after simplification that

a3 =
(5+8δ −δ 2)γ2 +(1+2δ +δ 2)γ

(2+2δ −δ 2)γ +(2+4δ +δ 2)

c2

2
+

3γ2− γ

(2+2δ −δ 2)γ +(2+4δ +δ 2)

d2

2
. (3.16)

Now, by applying the triangle inequality and the usual estimates |c2| 5 2 and |d2| 5 2 in
(3.16), we obtain

|a3|5
(8+8δ −δ 2)γ2 +(2δ +δ 2)γ

(2+2δ −δ 2)γ +(2+4δ +δ 2)
,

which is precisely our estimate in (3.2).
Next, adding (3.8) and (3.11), we obtain

(9+21δ )a2a3− (9+19)a3
2 = γ[(1+3δ )c3 +d3]+ γ(γ−1)[(1+3δ )c1c2 +d1d2]

+
γ(γ−1)(γ−2)

6
((1+3δ )c3

1 +d3
1). (3.17)
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We now find estimates on |a4|. We express a4 in terms of the first three coefficients of p and
q. For this, we subtract (3.11) from (3.8) to see

6(1+3δ )a4 = (15+39δ )a2a3− (11+25δ )a3
2 + γ[(1+3δ )c3−d3]

+ γ(γ−1)[(1+3δ )c1c2−d1d2]+
γ(γ−1)(γ−2)

6
[(1+3δ )c3

1−d3
1)

= (9+21δ )a2a3− (9+19δ )a3
2 +(6+18δ )a2a3− (2+6δ )a3

2 + γ[(1+3δ )c3−d3]

+ γ(γ−1)[(1+3δ )c1c2−d1d2]+
γ(γ−1)(γ−2)

6
[(1+3δ )c3

1−d3
1 ].

Using (3.16) and (3.17), we obtain

3a4 = 3γc1

(
(5+8δ −δ 2)γ2 +(1+2δ +δ 2)γ

(2+2δ −δ 2)γ +(2+4δ +δ 2)

c2

2
+

3γ2− γ

(2+2δ −δ 2)γ +(2+4δ +δ 2)

d2

2

)
+ γc3 + γ(γ−1)c1c2 +

γ(γ−1)(γ−2)
6

c3
1− γ

3c3
1.

Again, by substituting c2
1 from (3.14), we have

3a4 = γc3 +
(47+64δ −15δ 2)γ3 +(3+18δ +21δ )γ2− (8+16δ +6δ 2)γ

(2+2δ −δ 2)γ +(2+4δ +δ 2)

c1c2

6

+
17γ3−15γ2 +4γ

(2+2δ −δ 2)γ +(2+4δ +δ 2)

c1d2

6
.

We apply the usual estimates |c3|5 2, |c2|5 2, and |d2|5 2, and the refined estimate (3.15) for
the |c1|. This yields

|a4|5
2γ

3
+2

(64+64δ −15δ 2)γ3 +(−12+18δ +21δ 2)γ2− (4+16δ +6δ 2)γ

9[(2+2δ −δ 2)γ +(2+4δ +δ 2)]

·

√
2+2δ

γ(2+2δ −δ 2)+(2+4δ +δ 2)
,

which is precisely our estimate in (3.3). �

Taking δ = 1 in Theorem 3.1, we obtain the following corollary.

Corollary 3.1. Let the functions f and g given by (2.1) and (2.2), respectively, be in the class
Σ. If f ∈S ∗,γ

Σ
and g ∈M γ

Σ
(1) = K γ

Σ
, 0 < γ 5 1), then |a2| 5 2γ

√
4

3γ+7 , |a3| 5 15γ2+3γ

3γ+7 , and

|a4|5 2γ

3 +2113γ3+27γ2−26γ

9[3γ+7]

√
4

3γ+7 .

Remark 3.1. By setting δ = 0 in Theorem 3.1, we readily derive a result of Mishra and Soren
[17, Theorem 2.1].

For the function f ∈S ∗,γ
Σ

and its inverse, given by g ∈M γ

Σ
(δ ), 0 < γ 5 1;0 5 δ 5 1, we

state the following theorem.
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Theorem 3.2. Let the functions f and g given by (1.1) and (1.2), respectively, be in the class
Σ. If f ∈K γ

Σ
and g ∈M γ

Σ
(δ ), 0 < γ 5 1 and 05 δ 5 1, then

|a2|5 2γ

√
4+2δ

(3−3δ 2)γ +(7+14δ +3δ 2)
, (3.18)

|a3|5
γ2(85+159δ +51δ 2−7δ 3)− γ(15+11δ −19δ 2−7δ 3)

(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]
(3.19)

and

|a4|5
γ

6
+

(
γ3(1585+2899δ +727δ 2−315δ 3)+ γ2(−765−621δ +945δ 2 +441δ 3)

9(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

− γ(−110+106δ +454δ 2 +126δ 3)

9(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

)
·

√
4+2δ

(3−3δ 2)γ +(7+14δ +3δ 2)
. (3.20)

Proof. Let the functions f ∈ Σ and g ∈ Σ belong to the class K γ

Σ
and M γ

Σ
(δ ), respectively.

Then, by Definitions 3.2 and 3.3, we have

1+
z f ′′(z)
f ′(z)

= [p(z)]γ (z ∈ U) (3.21)

and

(1−δ )

(
wg′(w)
g(w)

)
+δ

(
1+

wg′′(w)
g′(w)

)
= [q(z)]γ (w ∈ U),

where p and q are members of the Carathéodory class P and are given by (2.6) and (2.7),
respectively. From (3.21), we find that

2a2 = γc1, (3.22)

6a3−4a2
2 = γc2 +

γ(γ−1)
2

c2
1 (3.23)

and

12a4−18a2a3 +8a3
2 = γc3 + γ(γ−1)c1c2 +

γ(γ−1)(γ−2)
6

c3
1. (3.24)

Moreover, from the equations (3.22) and (3.9), it is clear that

c1 =−
2d1

(1+δ )
. (3.25)

We shall first obtain refined estimates on |c1| by using the above relations. For this purpose,
we solve the equations (3.23) and (3.10), and we get

(5+7δ )a2
2 = γ[(1+2δ )c2 +3d2]+

γ(γ−1)
8

[(1+2δ )c2
1 +3d2

1 ]. (3.26)

Thus, by using d2
1 = (1+δ )2

4 c2
1 from (3.25) and a2 = γc1

2 from (3.22) in (3.26), we find after
simplification that

c2
1 =

8[(1+2δ )c2 +3d2]

(3−3δ 2)γ +(7+14δ +3δ 2)
. (3.27)
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The relation (3.27) also gives the following refined estimates:

|c1|5 4

√
4+2δ

(3−3δ 2)γ +(7+14δ +3δ 2)
(3.28)

Now, using the estimate (3.28) in (3.22), we have

|a2|5 2γ

√
4+2δ

(3−3δ 2)γ +(7+14δ +3δ 2)
,

which proves (3.18). In order to find bounds on |a3|, we solve the equations (3.10) and (3.23)
to get

12(1+δ )a3 = (13+23δ )a2
2 + γ[(1+2δ )c2−3d2]+

γ(γ−1)
2

[(1+2δ )c2
1−3d2

1 ]. (3.29)

Using d2
1 = (1+δ )2

4 c2
1 from (3.25) and a2

2 from (3.26) in the equation (3.29), we find after sim-
plification that

a3 =
γ(3+5δ )

2(5+7δ
c2 +

2γ

5+7δ
d2 +

γ(γ−1)(4+7δ +δ 2)

4(5+7δ )
c2

1,

which, on replacing c2
1 from (3.28), reduces to

a3 =

(
γ2(25+75δ +51δ 2−7δ 3)+ γ(5+17δ +19δ 2 +7δ 3)

2(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

)
c2

+

(
γ2(60+84δ )− γ(20+28δ )

2(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

)
d2. (3.30)

By applying the triangle inequality with the usual estimates |c2| 5 2 and |d2| 5 2 in (3.30),
we get

|a3|5
γ2(85+159δ +51δ 2−7δ 3)− γ(15+11δ −19δ 2−7δ 3)

(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]
,

which is precisely our estimate in (3.19).
Next, we add the equations (3.11) and (3.24) to find that

(30+66δ )a2a3− (32+64δ )a3
2 = γ[(1+3δ )c3 +4d3]+ γ(γ−1)[(1+3δ )c1c2 +4d1d2]

+
γ(γ−1)(γ−2)

6
[(1+3δ )c2

1 +4d2
1 ]. (3.31)

We now find the estimates on |a4|. For this purpose, we express a4 in terms of the first
three coefficients of the functions p and q. Then, making use of (3.11) to (3.24), we find by
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subtraction that

24(1+3δ )a4 = (66+174δ )a2a3− (48+112δ )a3
2 + γ[(1+3δ )c3−4d3]

+ γ(γ−1)[(1+3δ )c1c2−4d1d2]

+
γ(γ−1)(γ−2)

6
[(1+3δ )c3

1−4d3
1 ]

= (30+66δ )a2a3− (32+64δ )a3
2 +(36+108δ )a2a3− (16+48δ )a3

2

+ γ[(1+3δ )c3−4d3]+ γ(γ−1)[(1+3δ )c1c2−4d1d2]

+
γ(γ−1)(γ−2)

6
[(1+3δ )c3

1−4d3
1 ]. (3.32)

We now use (3.31) in the equation (3.32) and, upon simplifying the resulting equation, we
obtain

a4 =
γ

12
c3 +

3
2

a2a3−
2
3

a3
2 +

γ(γ−1)
12

c1c2 +
γ(γ−1)(γ−2)

72
c3

1.

Next, we substitute a3 from (3.30) and a2 by γ

2c1 form (3.22), and we get

a4 =
γ

12
c3 +

(
γ3(255+717δ +429δ 2−105δ 3)+ γ2(85+349δ +427δ 2 +147δ 3)

24(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

− γ(70+238δ +226δ 2 +42δ 3)

24(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

)
c1c2

+

(
3γ3(15+21δ )− γ2(5+7δ )

2(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

)
c1d2−

5γ3 +3γ2−2γ)

72
c3

1, (3.33)

which, on using c2
1 from (3.28), reduces to

a4 =
γ

12
c3 +

(
γ3(565+1471δ +727δ 2−315δ 3)+ γ2(135+639δ +945δ 2 +441δ 3)

72(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

− γ(130+442δ +454δ 2 +126δ 3)

72(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

)
c1c2

+

(
γ3(85+119δ )− γ2(75+105δ )+ γ(20+28δ )

6(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

)
c1d2. (3.34)

Thus, clearly, we can apply the usual estimates |c3| 5 2, |c2| 5 2 and |d2| 5 2, and the refined
estimate (3.28) for |c1| in the inequality (3.34). This yields

|a4|5
γ

6
+

(
γ3(1585+2899δ +727δ 2−315δ 3)+ γ2(−765−621δ +945δ 2 +441δ 3)

9(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

− γ(−110+106δ +454δ 2 +126δ 3)

9(5+7δ )[(3−3δ 2)γ +(7+14δ +3δ 2)]

)√
4+2δ

(3−3δ 2)γ +(7+14δ +3δ 2)
,

which is precisely our estimate in (3.20). �

Taking δ = 1 in Theorem 3.2, we get the following corollary.
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Corollary 3.2. Let the functions f and g given by (1.1) and (1.2), respectively, be in the class
Σ. If f ∈ K γ

Σ
and g ∈M γ

Σ
(1) := K γ

Σ
, 0 < γ 5 1, then |a2| 5 γ, |a3| 5 γ2, and |a4| 5 γ

6 +
1
2

(
17γ3−2γ

9

)
= 17γ3+γ

18 .

Taking δ = 0 in Theorem 3.2, we deduce the following corollary.

Corollary 3.3. Let the functions f and g given by (1.1) and (1.2), respectively, be in the class
Σ. If f ∈K γ

Σ
and g ∈M γ

Σ
(0) := S ∗,γ

Σ
, 0 < γ 5 1, then |a2| 5 2γ

√
4

3γ+7 , |a3| 5 17γ2−3γ

3γ+7 , and

|a4|5 γ

6 +
(

317γ3−153γ2+22γ

9[3γ+7]

)√
4

3γ+7 .

4. CONCLUDING REMARKS

Each bi-univalent function f (z) in U is, by definition, linked to a function p(z) ∈P , and its
inverse function g(w) is related to another function q(w) ∈P . The third and fourth coefficients
of the functions in the classes S ∗

Σ
(η), KΣ(η), S ∗,γ

Σ
,and K γ

Σ
, as well as those in the classes

MΣ(δ ,η) and M γ

Σ
(δ ), are obtained from these relationships and the refined estimates. Our

study focus on deriving bounds for the initial Taylor-Maclaurin coefficients a2, a3 and a4 for
functions belonging to each of these subclasses. In Theorem 2.1, bounds for these coefficients
are examined if f ∈ S ∗

Σ
(η) and g ∈MΣ(δ ,η) and are then investigated in Theorem 2.2 if

f ∈KΣ(η) and g∈MΣ(δ ,η). In Theorem 3.1, bounds for these coefficients are examined again
if f ∈S ∗,γ

Σ
and g∈M γ

Σ
(δ ) and are then investigated in Theorem 3.2 if f ∈K γ

Σ
and g∈M γ

Σ
(δ ).

All of the estimates, which we have proved in this study, are new. Presumably, therefore,
this article will motivate and encourage future researches on coefficient bounds and coefficient
estimates, as well as related developments on problems concerning, for example, the Hankel
and Toeplitz determinants as well as the Fekete-Szegö functional for many different subclasses
on the analytic and bi-univalent function class Σ; see, e.g., [1, 2, 3, 4] and the references therein.
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