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Abstract. We study the Choquard equation ( ε

i ∇−A(x))2u+W (x)u = (|x|−µ ∗F(|u|2)) f (|u|2)u in pres-
ence of a magnetic field A, i=

√
−1 and 0< µ < 2. We prescribe the lowest number of complex solutions

u ∈ H1(RN ,C). The quantity is at least equals to the number of global minima of the potential W , when
ε > 0 is sufficiently small. We prove a projection lemma of the Nehari manifold corresponding to the
energy functional, and then we use it to estimate the energy of each solution and to localize them around
each minima of the potential W . We analyze the energy levels of the solutions to distinguish them from
each other. We do not use topological arguments, and no symmetric function spaces are used.
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1. INTRODUCTION

We are concerned with the nonlinear Choquard complex equation(
ε

i
∇−A(x)

)2
u+W (x)u =

(
1
|x|µ
∗F(|u|2)

)
f (|u|2)u, x ∈ RN , u ∈ H1(RN ,C), (1.1)

where N ≥ 3, F(s) =
∫ s

0 f (t)dt, and i =
√
−1 is the imaginary unit. The function A : RN → RN

denotes a continuous magnetic field associated with a magnetic field B by means of curl(A)=B.
The symbol ∗ denotes the convolution and the fact that 0 < µ < 2 is linked to an integrability
property that we will discuss later on. The operator is defined by(

ε

i
∇−A

)2
ψ =−ε

2
∆ψ− 2ε

i
A.∇ψ + |A|2ψ− ε

i
ψdivA.

The function W is a real electric potential and the nonlinear term f is a superlinear function
with properties that will be timely displayed. Introducing the change of variables v(x) = u(εx),
we obtain that (1.1) is equivalent to(

1
i
∇−Aε(x)

)2

v+Wε(x)v =
(

1
|x|µ
∗F(|v|2)

)
f (|v|2)v, x ∈ RN , v ∈ H1(RN ,C), (1.2)
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with Aε(x)=A(εx) and Wε(x)=W (εx). We denote by H1(RN ,C) the Hilbert space obtained by
the closure of C∞

0 (RN ,C) under the scalar product 〈u,v〉ε = ℜ

(∫
∇εu∇εv+Wε(x)uv

)
, where

ℜ(z) denotes the real part of z ∈ C, z is its conjugated, ∇εu = (Dε
1u,Dε

2u, ...,Dε
Nu), and

Dε
ku(x) =

∂ku(x)
i
−Ak(εx)u(x) for k = 1, . . . ,N.

Notation. Everywhere in the paper we write simply
∫

to denote the integrals
∫
RN · · ·dx and

we use
∫

set to mean
∫

set · · ·dx.
The norm induced by the inner product 〈., .〉ε is defined by

‖u‖ε =

(∫
|∇εu|2 +Wε(x)|u|2

)1/2

.

Hereafter, we say that a function u ∈ H1(RN ,C) is a weak solution to (1.1) if

ℜ

(∫
∇εu∇εv+Wε(x)uv−

(
1
|x|µ
∗F(|u|2)

)
f (|u|2)uv

)
= 0, for each v ∈ H1(RN ,C).

We proceed to quote the conditions on the functions A,W and f .

The magnetic potential A : RN → RN is continuous. (1.3)

The potential W : RN → R is continuous, it has a minimum value

W0 = min
x∈RN

W (x); (1.4)

a limit for large |x|
W∞ = lim

|x|→∞

W (x)>W0; (1.5)

and it has multiple wells

W (m j) =W0, j = 1, ..., l with m1 = 0 and m j 6= mk if j 6= k. (1.6)

We suppose that f : [0,+∞)→ R is C1 and recall that 0 < µ < 2. We assume the following
growth conditions

lim
t→0+

f (t) = 0 (1.7)

and there exists s ∈
(

2,
2N−µ

N−2

)
verifying

lim
t→∞

f (t)
t(s−2)/2

= 0 (1.8)

and
f ′(t)> 0 for each t > 0. (1.9)

An example is f (t) = t
s−1

2 for s ∈ (2, 2N−µ

N−2 ).
We state our main result.

Theorem 1.1. Suppose that assumptions (1.3)-(1.9) on A,W, and f hold. Then, there exists
ε0 > 0 such that, for every 0 < ε < ε0, problem (1.2) has at least l nontrivial distinct solutions.



LOCALIZED COMPLEX SOLUTIONS 183

The Riesz potential

Iα(x) = Rα

1
|x|N−α

, where Rα =
Γ(N−α

2 )

Γ(α

2 )π
N
2 2α

and 0 < α < N.

appears in the Choquard equation due to quantum physics motivations presented in [19, 22, 28,
30, 31, 32, 36, 40].

The Choquard equation with a source term

−∆u+V (x)u = (Iα ∗ |u|p) |u|p−2u+µg, x ∈ RN , u ∈ H1(RN ,R),

whenever N = 3, p = α = 2, V = 1 and g ∈ H−1(R3) was studied by Küpper, Zhang and
Xia [29]. They affirm that there are µ2 ≥ µ1 > 0 such that there are two positive solutions if
0 < µ < µ1 and that no solution exists for µ > µ2. A result in the same way for a nonconstant
V , N ≥ 3, 0 < α < N, and (N−2)/(N+α)< 1/p < N/(N+α) was discussed in [50]; see also
[53].

The singularly perturbed Choquard equation

−ε
2
∆u+V (x)u = ε

−α (Iα ∗ |u|p) |u|p−2u, x ∈ RN , u ∈ H1(RN ,R),

and the so-called semiclassical limit of the solutions uε as ε → 0, was addressed in [47] in
dimension N = 3, p = α = 2 with V > 0 by means of Lyapunov–Schmidt finite dimension
reduction method. They proved that there are multibump positive solutions vε concentrating
at k given nondegenerate critical points of V . Similar equations with periodic V were studied
in [35]; see also [43] for a result with a power-like V at infinity. A penalization approach
was employed in [12] to find multibump solutions concentrating around minima of V ; see also
[1, 4, 14, 52] for other results about multiplicity and concentration of solutions.

Infinitely many solutions for the equation

−∆u+u = (Iα ∗ |u|p) |u|p−2u, x ∈ RN , u ∈ H1(RN ,R),

were proved in [33] whenever p = 2, by means of the Krasnoselskii genus theory. The equi-
variant critical point theory was used in [13] with p > 2 and in [16], the authors found sign
changing solutions; see also [23, 41].

The Choquard equation(
ε

i
∇−A(x)

)2
u+u = (Iα ∗ |u|p) |u|p−2u, x ∈ RN , u ∈ H1(RN ,C),

with a skew-symmetric constant matrix A was studied in [24], where the authors proved exis-
tence of a groundstate when N = 3 and p = α = 2. Infinitely many solutions were obtained in
[13] under the assumptions (N−2)/(N+α)< 1/p < N/(N+α) and dim(KerA) 6= 1; see also
[21, 44]. An account for more details on groundstates appeared in [38] and [39].

The Choquard equation subject to a variable magnetic field A : RN → RN , namely(
ε

i
∇−A(x)

)2
u+V (x)u =

1
ε

(
K ∗ |u|2u

)
, x ∈ RN , u ∈ H1(RN ,C), (1.10)

was studied in [15]. There N = 3, V ≥ 0, and K > 0 is an even homogeneous function. The
solutions exist for ε > 0 sufficiently small and concentrate as ε → 0 around a finite number
of maximum points related to V . Whenever V > 0 and K is even, other types of solutions
concentrating around a few points were found in [51] for a Schrödinger equation with magnetic
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field and Hartree type nonlinearity. Vortex type solutions for a magnetic nonlinear Choquard
equation were found in [42]. Whenever K is the Riesz potential Iα , the equation(

ε

i
∇−A(x)

)2
u+V (x)u = (Iα ∗ |u|p) |u|p−2u, x ∈ RN , u ∈ H1(RN ,C), (1.11)

was studied in [24] where the authors found groundstate solution when N = 3 and p = α = 2
and V is bounded, see also [17, 45, 46] for other multiplicity and concentration behavior of
solutions. For other recent results involving the diamagnetic operator and the Choquard term,
we refer to [7, 8, 10, 27, 48].

In [11, 31, 33], the Choquard equation was studied with µ = 1. Multibump solutions with
0 < µ < 2 were found in [3, 6, 26]; see also the quasilinear equation in [25]. Concluding this
Introduction, it is worth to say that, in the literature, we find some papers where the authors
studied the problems involving the nonlinearity of the Choquard type, such as [12, 18, 37] and
the references therein.

Usually, the methods dealing with multiple solutions are of topological nature, like genus
and category theory. Another way to obtain multiple solutions is by means of some periodic
property or by exploiting a sort of symmetry of the underlying space of functions u and it is also
related to a symmetric energy functional with f , V , and K symmetric; see (1.10) and (1.11). We
do not use such techniques used in some above cited papers.

We find localized solutions for equation (1.1) with a potential W possessing multiple global
minima (multiple well potential). The existence of multiple solutions correspond to number of
these minima when the scaling parameter ε is sufficiently small. We prove a projection lemma
of the Nehari manifold corresponding to the energy functional associated to (1.2), and then
we use it to estimate the energy of each solution and to localize them around each minima of
W . Part of the difficulties in the estimates we bypass is the fact that the solutions are complex
valued. This reasoning is one of the main contribution of the present paper.

In Section 2, we define the function spaces, norms and functionals. We study the equations

−∆u+W0u =

(
1
|x|µ
∗F(|u|2)

)
f (|u|2)u in RN

and

−∆u+W∞u =

(
1
|x|µ
∗F(|u|2)

)
f (|u|2)u in RN .

We compare these two limiting cases to the situation with W (x) of equation (1.1). In Section 3,
we study more precisely Φε to obtain suitable converging Palais-Smale sequences. In Section
4, we prove a projection lemma of the Nehari manifold corresponding to Φε into RN . In Section
5, the last section, we prove Theorem 1.1. Lemmas 5.1 is used to estimate the energy of each
solution and to localize them around each minima mi of W , i = 1, ..., l.

2. FUNCTIONAL SETTING

In the ongoing section, we define some functionals related to auxiliary equations which are
useful to estimate critical levels. We bound equation (1.1), or more precisely (1.2) to bound the
critical points of (2.6). By virtue of (1.7)-(1.8), one obtains, for every η > 0, a constant Cη > 0
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such that | f (t2)| ≤ η |t|+Cη |t|s−1 for every t ∈ R and a subsequent integration implies

|F(t2)| ≤ η

2
t2 +

Cη

s
|t|s for every t ∈ R. (2.1)

And (1.9) implies that
f (t2)t2−F(t2)≥ 0 for every t ∈ R. (2.2)

The so-called diamagnetic inequality was proved by Esteban and Lions [20, Section II], and
it states that, for any u ∈ H1(RN ,C), there holds

|∇|u|(x)|=
∣∣∣∣ℜ(∇u

u
|u|

)∣∣∣∣= ∣∣∣∣ℜ((∇u− iAεu)
u
|u|

)∣∣∣∣≤ |∇εu(x)|. (2.3)

And it follows from (2.3) that if u ∈ H1(RN ,C), then |u| ∈ H1(RN ,R). Moreover, the em-
bedding H1(RN ,C) ↪→ Lq(RN ,R) is continuous for each 2 ≤ q ≤ 2N

N−2 . For each bounded set
Ω ⊂ RN and 2 ≤ s < 2N

N−2 , the embedding H1(RN ,C) ↪→ Ls(Ω,R). is compact. A function
u ∈ H1(RN ,C) is a weak solution to problem (1.1) if

ℜ

(∫
∇εu∇εv+Wε(x)uv−

(
1
|x|µ
∗F(|u|2)

)
f (|u|2)uv

)
= 0 for each v ∈ H1(RN ,C).

In order to use the variational method, we have∣∣∣∣∫ ( 1
|x|µ
∗F(|u|2)

)
F(|u|2)

∣∣∣∣< ∞ for every u ∈ H1(RN ,C). (2.4)

In the verification of (2.4), it is important to recall Hardy-Littlewood-Sobolev inequality [32],
which asserts that if s,r > 1 and 0 < µ < 2 with 1/s+µ/N+1/r = 2, then, for f ∈ Ls(RN) and
h ∈ Lr(RN), there exists a sharp constant C(s,N,µ,r)> 0, independent of f ,h, such that∫ ∫ f (x)h(y)

|x− y|µ
dxdy≤C(s,N,µ,r)‖ f‖s‖h‖r. (2.5)

Inequality (2.5) guarantees that (2.4) holds. Concluding this fact, recall (2.1). Then, by Hardy-
Littlewood-Sobolev inequality and µ ∈ (0,2),

∫ ( 1
|x|µ ∗ |F(|u|2)|

)
|F(|u|2)| is finite if F(|u|2) ∈

Lt(RN ,R) for t > 1 and 2
t +

µ

N = 2. Therefore, t = 2N
2N−µ

. Since s ∈
(
2, 2N−µ

N−2

)
, we obtain∫

|F(|u|2)|t < ∞ for all u ∈ H1(RN ,C), showing (2.4).
In view of the above comments, the Euler-Lagrange functional Φε : H1(RN ,C)→ R associ-

ated to (1.2) is well defined by

Φε(u) =
1
2

∫
|∇εu|2 + 1

2

∫
Wε(x)|u|2−

1
4

∫ ( 1
|x|µ
∗F(|u|2)

)
F(|u|2). (2.6)

Furthermore, Φε is C1 and has the following derivative

Φ
′
ε(u)v = ℜ

(∫
∇εu∇εv+Wε(x)uv−

(
1
|x|µ
∗F(|u|2)

)
f (|u|2)uv

)
. (2.7)

Hence, the weak solutions of (1.2) are precisely the critical points of Φε . By means of (1.4) and
(1.5), we define in H1(RN ,R) two equivalent norms, namely

‖u‖2
0 =

∫
RN
|∇u|2 +

∫
RN

W0u2
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and
‖u‖2

∞ =
∫
RN
|∇u|2 +

∫
RN

W∞u2.

Respectively, we define the functionals Φ0, Φ∞ : H1(RN ,R)→ R by

Φ0(u) =
1
2
‖u‖2

0−
1
4

∫ ( 1
|x|µ
∗F(|u|2)

)
F(|u|2) (2.8)

and

Φ∞(u) =
1
2
‖u‖2

∞−
1
4

∫ ( 1
|x|µ
∗F(|u|2)

)
F(|u|2). (2.9)

Our purpose now is to prove the existence of a solution for the following equations

−∆u+W0u =

(
1
|x|µ
∗F(|u|2)

)
f (|u|2)u in RN , (2.10)

and

−∆u+W∞u =

(
1
|x|µ
∗F(|u|2)

)
f (|u|2)u in RN . (2.11)

We are mostly concerned to (2.10), because the study related to (2.11) is similar.
The functional Φ0 defined in (2.8) corresponds to the Euler-Lagrange equation (2.10). More-

over, Φ0 is of class C1 in H1(RN ,R) with derivative

Φ
′
0(u)φ =

∫
∇u∇φ +

∫
W0uφ −

(
1
|x|µ
∗F(|u|2)

)
f (|u|2)uφ for every φ ∈ H1(RN ,R).

Consequently, critical points of Φ0 are precisely the weak solutions of (2.10). We denote by N0
the Nehari manifold related to Φ0, defined by

N0 =
{

u ∈ H1(RN ,R) : u 6= 0, Φ
′
0(u)u = 0

}
. (2.12)

Using [5, Section 2], the hypotheses on f , Hardy-Littlewood-Sobolev inequality (2.5), a result
due to Lions [34, Lemma I.1] and the invariance of RN under translations, we can prove that
problem (2.10) has a nontrivial positive solution. By means of [49, Theorem 1.15], we assert
the existence of a Palais-Smale sequence (un) in H1(RN ,R) at level β0, that is, a sequence with
the property

Φ0(un)→ β0 and Φ
′
0(un)→ 0,

where β0 is the minimax level of the mountain pass theorem related to Φ0, namely

β0 = inf
ς∈J

max
t∈[0,1]

Φ0(ς(t)), (2.13)

where J =
{

ς ∈C([0,1],H1(RN ,R)) : ς(0) = 0 and Φ0(ς(1))< 0
}
. More precisely, the solu-

tion is U0 > 0 such that

U0 ∈ H1(RN ,R) such that Φ0(U0) = β0 and Φ
′
0(U0) = 0. (2.14)

Besides, for each u ∈ H1(RN ,R) with u 6= 0, there exists a unique t0 = t0(u) > 0 such that
t0u ∈N0 and Φ0(t0u) = max

t≥0
Φ0(tu). Moreover β0 = β̃0 = β̂0, where

β̃0 = inf
u∈H1(RN ,R),u6=0

max
t≥0

Φ0(tu) (2.15)
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and β̂0 = inf
N0

Φ0. We remark that the results for (2.10) are also true with respect to (2.11). Recall

(2.9) and define the mountain pass level β∞ = infζ∈Tmaxt∈[0,1]Φ∞(ζ (t)), where

T=
{

ζ ∈C([0,1],H1(RN ,R)) : ζ (0) = 0 and Φ∞(ζ (1))< 0
}

and the corresponding Nehari manifold

N∞ =
{

u ∈ H1(RN ,R) : u 6= 0, Φ
′
∞(u)u = 0

}
. (2.16)

By the above methods, equation (2.11) has a solution. In other words, there exists U∞ ∈
H1(RN ,R) such that Φ∞(U∞) = β∞ and Φ′∞(U∞) = 0. We define the next constant for later
use

σ
∗ =

β∞−β0

2
> 0. (2.17)

3. ESTIMATES OF CRITICAL LEVELS

In the present section, we prove the Palais-Smale property for Φε and we estimate is critical
levels. This is useful to localize its critical points as well as the solutions of (1.1) or (1.2) later.

By analogy with [2, Lemma 2.3], there exists a Palais-Smale sequence (un) in H1(RN ,C)
associated to Φε at a level βε ; see (2.6) and (2.7), that is, a sequence satisfies

Φε(un)→ βε and Φ
′
ε(un)→ 0,

where βε is the minimax level of the mountain pass theorem related to Φε , namely

βε = inf
ι∈I

max
t∈[0,1]

Φε(ι(t)),

where
I=

{
ι ∈C([0,1],H1(RN ,C)) : ι(0) = 0 and Φε(ι(1))< 0

}
.

By [2, Lemma 2.4], without loss of generality, we assume that (un) is bounded. Hence, for a
subsequence, there exists u ∈ H1(RN ,C) such that

un ⇀ u weakly in H1(RN ,C) and un(x)→ u(x) a.e. in RN .

By a similar reasoning as in [5, Section 2], it turns out that βε verifies

βε = inf
u∈H1(RN ,C),u 6=0

sup
t≥0

Φε(tu) = inf
u∈Nε

Φε(u). (3.1)

where Nε denotes the Nehari manifold related to Φε , that is,

Nε =
{

u ∈ H1(RN ,C) : u 6= 0, Φ
′
ε(u)u = 0

}
. (3.2)

Lemma 3.1. Recall (2.15) and (3.1), then βε → β0 as ε → 0.

Proof. Let u ∈Nε , v(x) = |u|(x), and t > 0 such that tv ∈N0. Then, from (1.4) and (2.3), we
deduce

β0 ≤Φ0(tv)≤Φε(tu)≤max
t≥0

Φε(tu) = Φε(u)

implying β0 ≤ βε for every ε > 0. Let tε > 0 and

uε,m j(x) =U0

(
εx−m j

ε

)
exp
(

iγm j

(
εx−m j

ε

))
,
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where

γm j (y) =
N

∑
k=1

Ak(m j)yk

is such that tεuε,m j ∈Nε , where U0 is the solution to (2.10); see (2.14). Then,

‖uε,m j‖
2
ε =

∫ ( 1
|x|µ
∗F(t2

ε |uε,m j |
2)

)
f (t2

ε |uε,m j |
2)|uε,m j |

2. (3.3)

From (2.2), we have limt→∞ F(t) = lim
t→∞

f (t) = ∞. Thus, we conclude that (tε) is bounded, and
for a subsequence, tε → t0 as ε → 0 and t0 ≥ 0. Furthermore, by the change of variable

y =

(
εx−m j

)
ε

,

we obtain ∫
Wε(x)|uε,m j |

2 =
∫

W (εy+m1)|U0|2 =
∫

W0|U0|2 +oε(1), (3.4)

∫
|∇εuε,m j |

2 =
∫ ∣∣∣∣∣∣

∇U0

(
εx−m j

ε

)
exp
(

iγm j
εx−m j

ε

)
i

+
(
A(m j)−A(εx)

)
U0

(
iγm j

εx−m j

ε

)∣∣∣∣∣∣
2

=
∫
|∇U0 +

[
A(m j)−A(εy+m j)

]
|2 = oε(1),

By the mean value theorem and Lebesgue theorem, we conclude that∫
|∇εuε,m j |

2 =
∫
|∇U0|2 +oε(1). (3.5)

Arguing as in (3.4), we also obtain∫ ( 1
|x|µ
∗F(t2

ε |uε ,m j|2)
)

f (t2
ε |uε,m j |

2)|uε,m j |
2 (3.6)

=
∫ ( 1
|x|µ
∗F(t2

0 |U0|2)
)

f (t2
0 |U0|2)|U0|2 +oε(1).

Letting ε → 0 in (3.3) and using (3.4), (3.5) and (3.6), we obtain

‖U0‖2
0 =

∫ ( 1
|x|µ
∗F(t2

0 |U0|2)
)

f (t2
0 |U0|2)|U0|2.

Since U0 ∈N0, we conclude from (2.12) that t0 = 1 and

β0 ≤ liminf
ε→0

βε ≤ limsup
ε→0

βε ≤ limsup
ε→0

Φε(tεU0)≤Φ0(t0U0)≤Φ0(U0) = β0.

�

The next lemma will be used to show the convergence of some Palais-Smale sequences re-
lated to Φε .

Lemma 3.2. Let (vn) be a Palais-Smale sequence in H1(RN ,C) for Φε in the level c such that
c≤ β0 +σ∗. If vn ⇀ 0 weakly in H1(RN ,C), then limn→∞ supy∈RN

∫
B1(y) |vn|2 = 0.
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Proof. Assume on the contrary that there exist a sequence (yn) in RN and Ξ > 0 such that∫
B1(yn)

|vn|2 ≥ Ξ for every n ∈ N. Since vn ⇀ 0 weakly in H1(RN ,C), then the sequence (yn)

is unbounded. Thus, for a subsequence, |yn| → ∞ as n→ ∞. Define wn(x) = |vn|(x+ yn) and
observe from (1.5) that, for a ξ > 0, there exists C > 0 such that W∞− ξ ≤W (x) for every
|x| ≥C. Then, using (2.3), for a subsequence, we deduce∫

|∇wn|2 +(W∞−ξ )
∫
|wn|2 ≤

∫
|∇εvn|2 +(W∞−ξ )

∫
|vn|2

≤
∫
|∇εvn|2 +

∫
W (x)|vn|2

=
∫ ( 1
|x|µ
∗F(|vn|2)

)
f (|vn|2)|vn|2

=
∫ ( 1
|x|µ
∗F(|wn|2)

)
f (|wn|2)|wn|2.

Since ξ > 0 is arbitrary and
∫
|wn|2 is bounded, we have that Φ′∞(wn)wn ≤ 0. Then there exists

0 < tn ≤ 1 such that tnwn ∈N∞, recall (2.16). From the fact that Φε(vn)→ c and Φ′ε(vn)→ 0
as n→ ∞, (1.9), and (2.2), we obtain

β∞ ≤ liminf
n→∞

[
Φ∞(tnwn)−

1
2

Φ
′
∞(tnwn)tnwn

]
= liminf

n→∞

∫ ( 1
|x|µ
∗F(|tnwn|2)

)[
1
2

f (|tnwn|2)|tnwn|2−
1
4

F(|tnwn|2)
]

≤ liminf
n→∞

∫ ( 1
|x|µ
∗F(|wn|2)

)[
1
2

f (|wn|2)|wn|2−
1
4

F(|wn|2)
]

= liminf
n→∞

∫ ( 1
|x|µ
∗F(|vn|2)

)[
1
2

f (|vn|2)|vn|2−
1
4

F(|vn|2)
]

= liminf
n→∞

[
Φε(vn)−

1
2

Φ
′
ε(vn)vn

]
= liminf

n→∞
Φε(vn) = c≤ β0 +σ

∗,

which is an absurd. �

Proposition 3.1. Recall (2.6), (2.14), and (2.17). The functional Φε satisfies the Palais-Smale
property at any level c≤ β0 +σ∗.

Proof. Let (un) be a sequence in H1(RN ,C) such that Φε(un)→ c and Φ′ε(un)→ 0. By a similar
reasoning developed in [2, Lemma 2.4], we conclude that (un) is bounded in H1(RN ,C) and
that there exists u ∈ H1(RN ,C) such that, for a subsequence, un ⇀ u weakly in H1(RN ,C). A
density argument yields Φ′ε(u) = 0. Setting vn = un−u, by Lemma 3.2, we obtain

vn→ 0 in Ls(RN) for s ∈
(

2,
2N−µ

N−2

)
,

which implies

liminf
n→∞

∫ ( 1
|x|µ
∗F(|vn|2)

)
f (|vn|2)|vn|2dx→ 0.

The fact that Φ′ε(vn)vn = on(1) leads to ‖vn‖2
ε = on(1). �
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4. LOCALIZATION OF SOLUTIONS

In this section, we prove the existence of multiple solutions for (1.2), as enounced in The-
orem 1.1. Lemma 4.2 turns out to be a sort of localization of the solutions, this will be fully
understood in Section 5.

Recalling assumption (1.6), we take ρ0, r0 > 0 satisfying

Bρ0(mi)∩Bρ0(m j) = /0 for i 6= j and i, j ∈ {1,2, ..., l},

Bρ0(m1)∪ ...∪Bρ0(ml) ⊂Br0(0),

and define
Γρ0

2

= Bρ0(m1)∪ ...∪Bρ0(ml).

Let ϒ : RN → RN be defined as

ϒ(x) =

{
x for | x |≤ r0
r0x
|x|

for |x| ≥ r0.

We also define Tε : Nε → RN by

Tε(u) =

∫
ϒ(εx)|u(x)|s∫
|u(x)|s

, (4.1)

where s ∈
(

2,
2N−µ

N−2

)
appeared in the hypothesis (1.8).

Lemma 4.1. There are sequences un,vn ∈H1(RN ,C) such that ‖un−vn‖εn = on(1), Φεn(vn) =
β0 +on(1) and ‖Φ′εn

(vn)‖εn = on(1).

Proof. By Lemma 3.1, we see that there exists un ∈Nεn and Φεn(un)→ β0. Moreover, arguing
as in [2, Lemma 2.4], we conclude that (un) is bounded in H1(RN ,C). Using the Ekeland
variational principle as in [9, Lemma 7], we find that there exists vn ∈H1(RN ,C) as stated. �

Lemma 4.2. There exist ε∗ > 0 and δ0 > 0 such that if u ∈ Nε and Φε(u) ≤ β0 + δ0, then
Tε(u) ∈ Γ ρ0

2
for every ε ∈ (0,ε∗).

Proof. By contradiction, we suppose that there exist εn→ 0 and un ∈Nεn such that

Tεn(un) 6∈ Γρ0

2

and βεn ≤Φεn(un)≤ β0 +
1
n

for every n ∈ N.

By Lemma 3.1, we have that un ∈Nεn and Φεn(un)→ β0. Moreover, arguing as in [2, Lemma
2.4], we conclude that (un) is bounded in H1(RN ,C). By the existence of a sequence vn ∈
H1(RN ,C) as in Lemma 4.1. Hence, for a subsequence, one has Tεn(vn) 6∈ Γ ρ0

4
.

Claim. We affirm that there exists a sequence (xn) in RN such that

εnxn→ m j ∈ {m1,m2, ...,ml} for some i = 1, ..., l, (4.2)
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where W (mi) =W0, and define ṽn(x) = vn(x+ xn),

there exits ṽ ∈ X such that ṽn→ ṽ in Ls(RN) for s ∈
(

2,
2N−µ

N−2

)
. (4.3)

We postpone the verification of (4.2) and (4.3), but if they are true, we obtain

Tεn(vn) =

∫
ϒ(εnx)|vn(x)|s∫
|vn(x)|s

=

∫
ϒ(εnx+ εnxn)|ṽn(x)|s∫

|ṽn(x)|s

=

∫
m j|ṽ(x)|s∫
|ṽ(x)|s

+on(1) = m j +on(1) ∈ Γρ0

2

.

Then Tεn(vn) ∈ Γ ρ0
4

for n large, which is a contradiction and the proof of the lemma is finished.

We proceed to show (4.2) and (4.3). The sequence (un) is bounded in H1(RN ,C). Hence,
from Lemma 4.1, one sees that (vn) is also bounded in H1(RN ,C). Then, for a subsequence,
there exists v ∈ H1(RN ,C) such that vn ⇀ v weakly in H1(RN ,C). Since

on(1)+‖vn‖2
εn
=
∫ ( 1
|x|µ
∗F(|vn|2)

)
f (|vn|2)|vn|2,

we conclude by Lemma 4.1 that vn does not converges 0 in Ls(RN). Define

ρn(x) =
|vn(x)|∫
|vn|s

,

where s ∈
(
2, 2N−µ

N−2

)
was given in (1.8). The sequence ρn is bounded in L1(RN). According to

the concentration compactness principle [34], after a careful analysis, we achieve that only one
of the next three items is correct.
Vanishing.

lim
n→∞

sup
y∈RN

∫
BR(y)

ρn = 0 for every R > 0.

Dichotomy. We use several times the characteristic function χK on a set K. There are a sequence
(xn) in RN , 0 < ρ < 1, R̂ > 0 and another sequence Rn→ ∞ such that mass functions ρn,1(x) =
χBR̂(xn)(x)ρn(x) and ρn,2(x) = χ(RN−BR̂(xn))(x)ρn(x) verify∫

RN
ρ1,n→ ρ (4.4)

and ∫
RN

ρ2,n→ 1−ρ.

Compactness. There exists (xn) in RN such that, for every ϖ > 0, there exists R > 0 such that∫
BR(xn)

ρn ≥ 1−ϖ for every n ∈ N.
Vanishing is excluded. Assume on the contrary if it is true, by means of [34], we obtain ρn→ 0
in Lp(RN) for 2 < p < 2N−µ

N−2 . This Implies that vn→ 0 in Ls(RN), which is an absurd.

Dichotomy is ruled out. In fact, we analyze two cases with respect to the sequence (xn).
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First case. Suppose that (xn) is bounded. By (4.4), there exists δ > 0 such that
∫
BR(xn)

|vn|s ≥ δ

for sufficiently large n. From the fact that (xn) is bounded, one sees that there exists R0 > R
such that

∫
BR0(0)

|v|s =
∫
BR0(0)

|vn|s ≥ δ , which yields v 6= 0. Otherwise, we define a cutoff

ϕ ∈C∞
0 (RN) such that

0≤ ϕ(x)≤ 1, ϕ ≡ 1 in BR(0) and 0≤ ϕ(x)≤ 1, ϕ ≡ 0 in RN−B2R(0). (4.5)

For ϕR(x) = ϕ(x/R0), it follows that Φ′εn
(vn)(ϕRvn) = on(1). Using (2.3), (1.4), and Fatou’s

Lemma and letting n→∞ and R→∞, we obtain Φ0(v)v≤ 0. Then, there exists t0 ∈ (0,1] such
that t0v ∈N0. By (1.9), we conclude that

β0 ≤ Φ0(t0v)− 1
2

Φ
′
0(t0v)t0v =

∫ ( 1
|x|µ
∗F(|tv|2)

)[
1
2

f (|tv|2)|tv|2− 1
4

F(|tv|2)
]

≤
∫ ( 1
|x|µ
∗F(|v|2)

)[
1
2

f (|v|2)|v|2− 1
4

F(v|2)
]
.

By Fatou’s lemma, ∫ ( 1
|x|µ
∗F(|v|2)

)[
1
2

f (|v|2)|v|2− 1
4

F(|v|2)
]

≤
∫ ( 1
|x|µ
∗F(|vn|2)

)[
1
2

f (|vn|2)|vn|2−
1
4

F(|vn|2)
]

= liminf
n→∞

[
Φεn(vn)−

1
2

Φ
′
εn
(vn)vn

]
= β0.

Hence, t0 = 1, Φ0(v) = β0, and

lim
n→∞

∫ ( 1
|x|µ
∗F(|vn|2)

)[
1
2

f (|vn|2)|vn|2−
1
4

F(|vn|2)
]

=
∫ ( 1
|x|µ
∗F(|v|2)

)[
1
2

f (|v|2)|v|2− 1
4

F(|v|2)
]
,

which yields

lim
n→∞

∫ ( 1
|x|µ
∗F(|vn|2)

)
f (|vn|2)|vn|2 =

∫ ( 1
|x|µ
∗F(|v|2)

)
f (|v|2)|v|2

and

lim
n→∞

∫ ( 1
|x|µ
∗F(|vn|2)

)
F(|vn|2) =

∫ ( 1
|x|µ
∗F(|v|2)

)
F(|v|2).

Therefore ‖vn− v‖2
0 = on(1). For a subsequence, vn→ v in Ls(RN). The boundedness of (xn)

and (4.4) imply
∫
RN ρ1,n→ 0, and then ρ = 0, which is an absurd in view of (4.4).

Second case. Suppose that (xn) is unbounded. Hence, for a subsequence, we obtain |xn| → ∞

as n→ ∞. Define
wn(x) = |vn|(x+ xn). (4.6)

The boundedness of (vn) in H1(RN ,C), implies the boundedness of (wn) in H1(RN ,C). Thus,
for a subsequence one has wn ⇀ w weakly in H1(RN ,C). If w = 0, we obtain

ρ +on(1) =
∫
RN

ρ1,n =
∫
RN

χBr1(xn)
|vn|(x)
‖vn‖s

Ls
=
∫
RN

χBr1(0)
wn(x− xn))

‖wn‖s
Ls

= on(1),
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leading to an absurd, then w 6= 0.
Next we use the fact that wn ⇀ w 6= 0 weakly in H1(RN ,C). We discus two possibilities

related to the sequence (εnxn).

First possibility. If (εnxn) is unbounded, then, for a subsequence, |εnxn| →∞ as n→∞. From
(1.5) and for ξ > 0, there exists C > 0 such that W∞−ξ ≤W (x) for every |x| ≥C. Thus, by the
diamagnetic inequality (2.3), for a subsequence of wn(x) = |vn|(x+ εnxn) defined in (4.6), we
deduce ∫

|∇wn|2 +(W∞−ξ )
∫
|wn|2 ≤

∫
|∇εvn|2 +(W∞−ξ )

∫
|vn|2

≤
∫
|∇εvn|2 +

∫
W (x)|vn|2

=
∫ ( 1
|x|µ
∗F(|vn|2)

)
f (|vn|2)|vn|2

=
∫ ( 1
|x|µ
∗F(|wn|2)

)
f (|wn|2)|wn|2dx.

Since ξ > 0 is arbitrary and
∫
|wn|2 is bounded, we conclude that Φ′∞(wn)wn ≤ 0. Then, there

exists 0 < tn ≤ 1 such that tnwn ∈N∞. By (1.9) and (2.2), we have

β∞ ≤ liminf
n→∞

[
Φ∞(tnwn)−

1
2

Φ
′
∞(tnwn)tnwn

]
= liminf

n→∞

∫ ( 1
|x|µ
∗F(|tnwn|2)

)[
1
2

f (|tnwn|2)|tnwn|2−
1
4

F(|tnwn|2)
]

≤ liminf
n→∞

∫ ( 1
|x|µ
∗F(|wn|2)

)[
1
2

f (|wn|2)|wn|2−
1
4

F(|wn|2)
]

= liminf
n→∞

∫ ( 1
|x|µ
∗F(|vn|2)

)[
1
2

f (|vn|2)|vn|2−
1
4

F(|vn|2)
]

= liminf
n→∞

[
Φε(vn)−

1
2

Φ
′
ε(vn)vn

]
= liminf

n→∞
Φε(vn) = c≤ β0 +σ

∗,

which is an absurd, compare with (2.17).

Second possibility. Consider the case that (εnxn) is bounded. Let ϕ ∈C∞
0 (RN) be as in (4.5).

Then, for ϕR(x) = ϕ(x/R0), it implies that Φ′εn
(wn)(ϕRwn) = on(1). Using (2.3) again, (1.4),

letting n→ ∞, Fatou’s Lemma and R→ ∞, we obtain Φ0(v)v≤ 0. Then, there exists t0 ∈ (0,1]
such that t0v ∈N0. By (1.9), we obtain

β0 ≤ Φ0(t0w)− 1
2

Φ
′
0(t0w)t0w

=
∫ ( 1
|x|µ
∗F(|tw|2)

)[
1
2

f (|tw|2)|tw|2− 1
4

F(|tw|2)
]

≤
∫ ( 1
|x|µ
∗F(|w|2)

)[
1
2

f (|w|2)|v|2− 1
4

F(|w|2)
]
.
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By Fatou’s lemma, one obtains∫ ( 1
|x|µ
∗F(|w|2)

)[
1
2

f (|w|2)|w|2− 1
4

F(|w|2)
]

≤
∫ ( 1
|x|µ
∗F(|wn|2)

)[
1
2

f (|wn|2)|wn|2−
1
4

F(|wn|2)
]

= liminf
n→∞

[
Φεn(wn)−

1
2

Φ
′
εn
(wn)wn

]
= β0.

Hence, t0 = 1, Φ0(v) = β0, and

lim
n→∞

∫ ( 1
|x|µ
∗F(|wn|2)

)[
1
2

f (|wn|2)|wn|2−
1
4

F(|wn|2)
]

=
∫ ( 1
|x|µ
∗F(|w|2)

)[
1
2

f (|w|2)|w|2− 1
4

F(|w|2)
]
,

which implies

lim
n→∞

∫ ( 1
|x|µ
∗F(|wn|2)

)
f (|wn|2)|vn|2 =

∫ ( 1
|x|µ
∗F(|w|2)

)
f (|w|2)|w|2 (4.7)

and

lim
n→∞

∫ ( 1
|x|µ
∗F(|wn|2)

)
F(|wn|2) =

∫ ( 1
|x|µ
∗F(|w|2)

)
F(|w|2). (4.8)

Thus ‖wn−w‖2
0 = on(1). In particular, for a subsequence, wn → w in Ls(RN). Since (xn) is

bounded, we find by (4.4) that
∫
RN ρ1,n → 0 with ρ = 0, and we arrive at a contradiction. In

synthesis, since Vanishing and Dichotomy do not occur, we conclude that Compactness must
happen. Therefore, by the same reasoning of steps (4.7) and (4.8), one has ‖vn− v‖2

0 = on(1).
Furthermore, for a subsequence, one obtains εnxn→ m j for some j = 1, ..., l (recall (1.6)) and
vn→ v in Ls(RN). Hence, the Claim that we formulated before at (4.2) and (4.3) is true and the
proof of the lemma is accomplished. �

5. PROOF OF THEOREM 1.1

We show that we can prescribe the lowest number of solutions for equation (1.2). The so-
lutions are not identical since they have different energy levels. And each solution is located
around a global minima of the potential function W . Recall (2.6), (3.1), (3.2), and (4.1). We
define the following elements

K j
ε = {u ∈Nε : |Tε(u)−m j|< ρ0},

∂K j
ε = {u ∈Nε : |Tε(u)−m j|= ρ0},

α
j

ε = inf
u∈K j

ε

Φε(u), and α̃
j

ε = inf
u∈∂K j

ε

Φε(u).

Lemma 5.1. Recall (2.13) and (2.14). There exist ε∗ > 0 and δ > 0 such that

α
j

ε < β0 +
δ

2
and α

j
ε < α̃

j
ε for every ε ∈ (0,ε∗).
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Proof. Let U0 ∈ H1(RN) be the solution of (2.10) settled in (2.14). Then Φ0(U0) = β0 and
Φ′0(U0)U0 = 0. Recall (1.6) where we assumed that W (m j) =W0 for j = 1, ..., l and define for
each j = 1,2, ..., l the localized function

U j
n =U0

(
x−

m j

εn

)
exp
(

iγm j

(
εx−m j

ε

))
.

Let tεn > 0 such that tεnU
j

n ∈ Nεn . Then, by a change of variable and arguing as in the proof
Lemma 3.1, we conclude that for a subsequence tεn → t0 and

limsup
n→∞

Φεn(tεnU
j

n )≤Φ0(t0U0)≤Φ0(U0) = β0.

The sequence εn is arbitrary and by the fact that U j
n ∈K i

ε , we obtain α
j

ε < β0 +
δ

2
. The second

inequality follows from Lemma 4.2. �

We end up with a result on the existence of solutions.

Proof of Theorem 1.1. By an application of the Ekeland variational principle as in [9, Lemma
7], there exist a Palais-Smale sequence (u j

n) in K i
ε at level α

j
ε for the functional Φε for each

1 ≤ j ≤ l. Since α
j

ε < β0 + δ < β0 +σ∗, from Proposition 3.1, there exists u j
ε ∈ H1(RN ,C)

such that, for a subsequence, u j
n→ u j

ε in H1(RN ,C). Then,

u j
ε ∈K j

ε , Φε(u
j
ε) = α

j
ε and Φ

′
ε(u

j
ε)u

j
ε = 0.

Hence u j
ε is a nontrivial solution of (1.2). Since

Tε(u
j
ε) ∈Bρ0(m j), Tε(uk

ε) ∈Bρ0(m j) and Bρ0(m j)∩Bρ0(mk) = /0 for j 6= k,

we conclude that u j
ε 6= uk

ε . Hence, for ε ∈ (0,ε∗) ,the functional Φε has at least l nontrivial
critical points, giving rise to l solutions. The solutions are not identical, since they have different
energy levels. �
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[29] T. Küpper, Z. Zhang, H. Xia, Multiple positive solutions and bifurcation for an equation related to Choquard’s

equation, Proc. Edinb. Math. Soc. 46 (2003), 597-607.
[30] M. Lewin, P. T. Nam, N. Rougerie, Derivation of Hartree’s theory for generic mean-field Bose systemsm

Adv. Math. 254 (2014), 570-621.
[31] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud.

Appl. Math. 57 (1976/77), 93-105.
[32] E. H. Lieb, M. Loss, Analysis 2nd ed. Graduate Studies in Mathematics, American Mathematical Society,

2001.
[33] P. -L. Lions, The Choquard equation and related questions, Nonlineare Anal. 4 (1980), 1063-1072.
[34] P. -L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case,
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