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MONOTONE CONTRACTIVE MAPPINGS
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Abstract. We consider three classes of monotone contractive mappings defined on a complete metric space. For each mapping

in one of these classes, we establish the existence of a unique fixed point which attracts all iterates.
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1. INTRODUCTION AND PRELIMINARIES

Since the publication of Banach’s classical fixed point theorem [2], metric fixed point theory has been
and continues to be an important part of nonlinear operator theory [3, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17].
For example, several results regarding the existence of fixed points for general nonexpansive mappings
in special Banach spaces were presented in [6, 7], while for self-mappings of general complete metric
spaces existence results were established for classes of contractive mappings in [4, 10, 11]. An extension
of the existence result of [11] and several other existence results for certain mappings of contractive type
have also been presented in [18].

In the present paper, employing certain contractive type assumptions, we obtain existence results for
monotone nonexpansive mappings – a class of nonlinear mappings which has been the subject of a
rapidly growing area of research [1, 5].

Let (X ,ρ) be a complete metric space equipped with a partial order≤, that is, for all points x,y,z ∈ X ,
we have

x≤ x,

if x≤ y, y≤ x, then x = y,

and

if x≤ y, y≤ z, then x≤ z.

We also assume that

{(x,y) ∈ X×X : x≤ y}

is a closed subset of X×X .
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Let K be a nonempty closed subset of X which is not a singleton. Let xK ∈ K and assume that at least
one of the following relations holds:

xK ≤ x for all x ∈ K (1.1)

or

x≤ xK for all x ∈ K. (1.2)

For each x ∈ K and each r > 0, set

B(x,r) := {y ∈ X : ρ(x,y)≤ r}.

Let T : K→ X . Denote by T 0 the identity operator I : K→ K, that is, I(x) = x, x ∈ K. Suppose that
the graph of T

graph(T ) = {(x,T (x)) : x ∈ K}

is a closed subset of X×X ,

T i(xK) ∈ K for all integers i≥ 1 (1.3)

and

T (x)≤ T (y) for all x,y ∈ K such that x≤ y. (1.4)

In this paper we establish three theorems regarding the existence of a unique fixed point of such a
mapping T under three different contractivity assumptions. In the first result we use contractivity in the
sense of Rakotch [11], the second is in the spirit of Boyd and Wong [4], while in the third result T is a
contractive mapping in the sense of Matkowski [10].

Theorem 1.1. Assume that φ : [0,∞)→ [0,1] is a decreasing function,

φ(t)< 1 for all t > 0 (1.5)

and that for all x,y ∈ K satisfying x≤ y, we have

ρ(T (x),T (y))≤ φ(ρ(x,y))ρ(x,y). (1.6)

Then {T i(xK)}∞
i=1 converges, limi→∞ T i(xK) is the unique fixed point of the mapping T and the following

assertion holds.
Let M and ε be positive. Then there exists a natural number n0 such that if

x ∈ K∩B(xK ,M),

n > n0 is an integer and T n(x) is defined, then

ρ(T i(x), lim
j→∞

T j(xK))≤ ε

for all i = n0 +1, . . . ,n.

Theorem 1.2. Assume that the function φ : [0,∞)→ [0,∞) is upper semicontinuous,

φ(t)< t for all t > 0 (1.7)

and that for all x,y ∈ K satisfying x≤ y, we have

ρ(T (x),T (y))≤ φ(ρ(x,y)). (1.8)
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Then {T i(xK)}∞
i=1 converges, limi→∞ T i(xK) is the unique fixed point of the mapping T and the following

assertion holds.
Let M and ε be positive. Then there exists a natural number n0 such that if

x ∈ K∩B(xK ,M),

n > n0 is an integer and T n(x) is defined, then

ρ(T i(x), lim
j→∞

T j(xK))≤ ε

for all i = n0 +1, . . . ,n.

Theorem 1.3. Assume that φ : [0,∞)→ [0,∞) is an increasing function,

lim
n→∞

φ
n(t) = 0 for all t > 0 (1.9)

and that for all x,y ∈ K satisfying x≤ y, we have

ρ(T (x),T (y))≤ φ(ρ(x,y)). (1.10)

Then {T i(xK)}∞
i=1 converges, limi→∞ T i(xK) is the unique fixed point of the mapping T and the following

assertion holds.
Let M and ε be positive. Then there exists a natural number n0 such that if

x ∈ K∩B(xK ,M),

n > n0 is an integer and T n(x) is defined, then

ρ(T i(x), lim
j→∞

T j(xK))≤ ε

for all i = n0 +1, . . . ,n.

2. PROOF OF THEOREM 1.1

If (1.1) holds, then T 0(xK)≤ T 1(xK). In view of (1.4), for all integers i≥ 0, we have

T i(xK)≤ T i+1(xK). (2.1)

If (1.2) holds, then T 1(xK)≤ T 0(xK). In view of (1.4), for all integers i≥ 0, we have

T i+1(xK)≤ T i(xK). (2.2)

By (1.6), (2.1) and (2.2), for all integers i≥ 0, we have

ρ(T i(xK),T i+1(xK))≥ ρ(T i+1(xK),T i+2(xK)). (2.3)

We claim that

lim
i→∞

ρ(T i(xK),T i+1(xK)) = 0. (2.4)

Suppose to the contrary that (2.4) does not hold. In view of (2.3), one sees that there exists a number
r > 0 such that

ρ(T i(xK),T i+1(xK))> r for all integers i≥ 0. (2.5)
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Since the function φ is decreasing, it follows from (1.6), (2.1), (2.2) and (2.5) that, for all integers i≥ 0,

ρ(T i(xK),T i+1(xK))−ρ(T i+1(xK),T i+2(xK))

≥ ρ(T i(xK),T i+1(xK))−φ(ρ(T i(xK),T i+1(xK)))ρ(T i(xK),T i+1(xK))

≥ ρ(T i(xK),T i+1(xK))(1−φ(ρ(T i(xK),T i+1(xK))))

≥ ρ(T i(xK),T i+1(xK))(1−φ(r))

≥ r(1−φ(r)).

This implies, for every natural number n, that

ρ(xK ,T 1(xK))≥ ρ(xK ,T 1(xK))−ρ(T n(xK),T n+1(xK))

=
n−1

∑
i=0

[ρ(T i(xK),T i+1(xK))−ρ(T i+1(xK),T i+2(xK))]

≥ nr(1−φ(r))→ ∞ as n→ ∞.

The contradiction we have reached proves that (2.4) does hold.
Next, we prove that {T i(xK)}∞

i=1 is a Cauchy sequence. To this end, let ε > 0. By (2.4), there exists a
natural number n0 such that, for all integers i≥ n0,

ρ(T i(xK),T i+1(xK))≤ (ε/4)(1−φ(ε)). (2.6)

Assume that

n2 > n1 ≥ n0 (2.7)

are integers. We now show that

ρ(T n1(xK),T n2(xK))≤ ε.

Suppose to the contrary that

ρ(T n1(xK),T n2(xK))> ε. (2.8)

By (1.6), (2.1), (2.2) and (2.8), one sees that

ρ(T n1+1(xK),T n2+1(xK))

≤ φ(ρ(T n1(xK),T n2(xK)))ρ(T n1(xK),T n2(xK))

≤ φ(ε)ρ(T n1(xK),T n2(xK)).

(2.9)

In view of (2.9), one has

φ(ε)ρ(T n1(xK),T n2(xK))

≥ ρ(T n1+1(xK),T n2+1(xK))

≥ ρ(T n1(xK),T n2(xK))−ρ(T n1(xK),T n1+1(xK))−ρ(T n2(xK),T n2+1(xK)).

(2.10)

It follows from (2.6)–(2.8) and (2.10) that

(1−φ(ε))ε/2≥ ρ(T n1(xK),T n1+1(xK))+ρ(T n2(xK),T n2+1(xK))

≥ (1−φ(ε))ρ(T n1(xK),T n2(xK))

≥ ε(1−φ(ε)),
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which is a contradiction. The contradiction we have reached proves that

ρ(T n1(xK),T n2(xK))≤ ε

for all integers n1,n2 ≥ n0. Thus {T i(xK)}∞
i=1 is indeed a Cauchy sequence, as claimed, and there exists

x̂ = lim
i→∞

T i(xK). (2.11)

Since graph(T ) is a closed set, one sees that (2.11) implies that T (x̂) = x̂. Next we show that x̂ is the
unique fixed point of T .

To this end, we assume that z ∈ K and

T (z) = z. (2.12)

If (1.1) holds, then T i(xK) ≤ z for all integers i ≥ 1 and x̂ ≤ z. If (1.2) holds, then z ≤ T i(xK) for all
integers i ≥ 1 and z ≤ x̂. In both cases, (1.6) implies that ρ(z, x̂) ≤ φ(ρ(z, x̂))ρ(z, x̂). If z 6= x̂, then we
have reached a contradiction. Therefore z = x̂, as claimed.

Now let M and ε be positive. There exists a natural number n0 such that

n0 > M((1−φ(ε/2))(ε/2))−1 (2.13)

and

ρ(T i(xK), x̂)≤ ε/2 for all integers i≥ n0. (2.14)

Assume that

x ∈ B(xK ,M)∩K, (2.15)

n > n0 is an integer and that T n(x) is defined. If (1.1) holds, then we find from (1.6) that

T i(xK)≤ T i(x) for all integers i = 1, . . . ,n. (2.16)

If (1.2) holds, then we find from (1.6) that

T i(x)≤ T i(xK) for all integers i = 1, . . . ,n. (2.17)

In both cases, (1.6) implies, for all i = 0, . . . ,n−1, that

ρ(T i+1(x),T i+1(xK))≤ φ(ρ(T i(x),T i(xK)))ρ(T i(x),T i(xK)). (2.18)

We now show that there exists an integer i ∈ [0,n0] such that ρ(T i(x),T i(xK)) ≤ ε/2. Suppose to the
contrary that this does not hold. For all i = 0, . . . ,n0, one has

ρ(T i(x),T i(xK))> ε/2. (2.19)

In view of (2.18) and (2.19), for all i = 0, . . . ,n0, one has

ρ(T i+1(x),T i+1(xK))≤ φ(ρ(T i(x),T i(xK)))ρ(T i(x),T i(xK))

≤ φ(ε/2)ρ(T i(x),T i(xK)).
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By (2.9), (2.15) and the relation above, we have

M ≥ ρ(x,xK)

≥ ρ(x,xK)−ρ(T n0(x),T 0(xK))

=
n0−1

∑
i=0

[ρ(T i(x),T i(xK))−ρ(T i+1(x),T i+1(xK))]

≥
n0−1

∑
i=0

(1−φ(ε/2))ρ(T i(x),T i(xK))

≥ n0(1−φ(ε/2))ε/2

and
n0 ≤M(1−φ(ε/2))−1(ε/2)−1.

This inequality contradicts (2.13). The contradiction we have reached proves that there indeed exists an
integer i0 ∈ {0, . . . ,n0} such that

ρ(T i0(x),T i0(xK))≤ ε/2. (2.20)

Assume now that an integer i satisfies i0 ≤ i≤ n. In view of (2.18) and (2.20), one has

ρ(T i(x),T i(xK))≤ ε/2. (2.21)

Since i≥ n0, we find from (2.14) and (2.21) that

ρ(x̂,T i(x))≤ ρ(x̂,T i(xK))+ρ(T i(x),T i(xK))≤ ε.

This completes the proof of Theorem 1.1.

3. PROOF OF THEOREM 1.2

If (1.1) holds, then T 0(xK)≤ T 1(xK). In view of (1.4), for all integers i≥ 0, one has

T i(xK)≤ T i+1(xK). (3.1)

If (1.2) holds, then T 1(xK)≤ T 0(xK). In view of (1.4), for all integers i≥ 0, one has

T i+1(xK)≤ T i(xK). (3.2)

By (1.7), (1.8), (3.1) and (3.2), for all integers i≥ 0, one has

ρ(T i+1(xK),T i+2(xK))≤ φ(ρ(T i(xK),T i+1(xK)))≤ ρ(T i(xK),T i+1(xK)). (3.3)

We claim that limi→∞ ρ(T i(xK),T i+1(xK)) = 0. Suppose to the contrary that this does not hold. In view
of (3.3), one sees that there exists a number r > 0 such that

ρ(T i(xK),T i+1(xK))> r for all integers i≥ 0. (3.4)

Since the function t−φ(t) is positive for all t > 0 and lower semicontinuous, there exists a number γ > 0
such that

t−φ(t)> γ for all t ∈ [r/4,ρ(T 0(xK),T 1(xK))+1]. (3.5)

It now follows from (3.3), (3.4) and (3.5) that

ρ(T i+1(xK),T i+2(xK))≤ φ(ρ(T i(xK),T i+1(xK)))≤ ρ(T i(xK),T i+1(xK))− γ, ∀i≥ 0. (3.6)
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For all integers n≥ 1, we find from (3.6) that

ρ(T 0(xK),T 1(xK))≥ ρ(T 0(xK),T 1(xK))−ρ(T n(xK),T n+1(xK))

=
n−1

∑
i=0

[ρ(T i(xK),T i+1(xK))−ρ(T i+1(xK),T i+2(xK))]

≥ γn→ ∞ as n→ ∞.

The contradiction we have reached proves that

lim
i→∞

ρ(T i(xK),T i+1(xK)) = 0, (3.7)

as claimed.
Next, we prove that {T i(xK)}∞

i=1 is a Cauchy sequence. To this end, let δ > 0. We show that there
exists a natural number n0 such that for each pair of integers i, j ≥ n0, we have ρ(T i(xK),T j(xK)) ≤ δ .

Suppose to the contrary that this does not hold. For each natural number k, there exist integers ik, jk such
that k ≤ ik < jk and

ρ(T ik(xK),T jk(xK))> δ . (3.8)

We may assume without any loss of generality that for each natural number k, the following property
holds:

(P1) if an integer j satisfies ik ≤ j < jk, then

ρ(T ik(xK),T j(xK))≤ δ . (3.9)

Let k be a natural number. By (3.8) and (3.9), one has

δ < ρ(T ik(xK),T jk(xK))

≤ ρ(T jk(xK),T jk−1(xK))+ρ(T jk−1(xK),T ik(xK))

≤ ρ(T jk(xK),T jk−1(xK))+δ .

(3.10)

In view of (3.7), one has

lim
k→∞

ρ(T jk(xK),T jk−1(xK)) = 0. (3.11)

It follows from (3.10) and (3.11) that

lim
k→∞

ρ(T ik(xK),T jk(xK)) = δ . (3.12)

By (3.3) and (3.8), one has

δ < ρ(T ik(xK),T jk(xK))

≤ ρ(T ik(xK),T ik+1(xK))+ρ(T ik+1(xK),T jk+1(xK))+ρ(T jk+1(xK),T jk(xK))

≤ φ(ρ(T ik(xK),T jk(xK)))+ρ(T ik(xK),T ik+1(xK))+ρ(T jk+1(xK),T jk(xK)).

(3.13)

Using (3.7), (3.12) and (3.13), one has

δ = lim
k→∞

ρ(T ik(xK),T jk(xK))

≤ liminf
k→∞

φ(ρ(T ik(xK),T jk(xK)))

= φ(δ ).
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It follows that δ ≤ φ(δ ). The contradiction we have reached proves that {T i(xK)}∞
i=1 is indeed a Cauchy

sequence, as claimed, and there exists x̂ = limi→∞ T i(xK). Since graph(T ) is a closed set, we have

T (x̂) = x̂. (3.14)

Now we show that x̂ is the unique fixed point of T .
To this end, assume that z ∈ K and

T (z) = z. (3.15)

If (1.2) holds, then T i(xK) ≤ z for all integers i ≥ 1 and x̂ ≤ z. If (1.2) holds, then z ≤ T i(xK) for all
integers i ≥ 1 and z ≤ x̂. In both cases, ρ(z, x̂) ≤ φ(ρ(z, x̂)). This implies that z = x̂, as claimed. Let M
and ε be positive. Since the function t− φ(t) is positive for all t > 0 and lower semicontinuous, there
exists a number γ > 0 such that

t−φ(t)> γ for all t ∈ [ε/4,M+ ε +1]. (3.16)

There also exists a natural number n0 such that

n0 > Mγ
−1 (3.17)

and

ρ(T i(xK), x̂)≤ ε/2 for all integers i≥ n0. (3.18)

Assume that

x ∈ B(xK ,M), (3.19)

n > n0 is an integer and that T n(x) is defined. If (1.1) holds, then we find from (1.4) that

T i(xK)≤ T i(x) for all integers i = 1, . . . ,n. (3.20)

If (1.2) holds, then we find from (1.4) that

T i(x)≤ T i(xK) for all integers i = 1, . . . ,n. (3.21)

In both cases, inequality (1.8) implies that, for all i = 0, . . . ,n−1,

ρ(T i+1(x),T i+1(xK))≤ φ(ρ(T i(x),T i(xK))). (3.22)

We now show that there exists an integer i ∈ [0,n0] such that ρ(T i(x),T i(xK)) ≤ ε/2. Suppose to the
contrary that this does not hold. In view of (3.19) and (3.22), we have, for all i = 0, . . . ,n0, that

M ≥ ρ(x,xK)≥ ρ(T i(x),T i(xK))> ε/2. (3.23)

By (3.16) and (3.23), for all i = 0, . . . ,n0, one has

ρ(T i(x),T i(xK))−φ(ρ(T i(x),T i(xK)))> γ.

When combined with (3.22), this inequality implies that

ρ(T i(x),T i(xK))−ρ(T i+1(x),T i+1(xK))> γ. (3.24)
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By (3.19) and (3.24), one has

M ≥ ρ(x,xK)

≥ ρ(x,xK)−ρ(T n0(x),T 0(xK))

=
n0−1

∑
i=0

[ρ(T i(x),T i(xK))−ρ(T i+1(x),T i+1(xK))]

≥ γn0

and n0 ≤ Mγ−1. This contradicts (3.17). The contradiction we have reached proves that there indeed
exists i0 ∈ {0, . . . ,n0} such that

ρ(T i0(x),T i0(xK))≤ ε/2. (3.25)

It follows from (3.22) and (3.25) that

ρ(T i(x),T i(xK))≤ ε/2, ∀i ∈ {i0, . . . ,n}.

Since i≥ n0, we find from (3.18) that

ρ(x̂,T i(x))≤ ρ(x̂,T i(xK))+ρ(T i(x),T i(xK))< ε.

This completes the proof of Theorem 1.2.

4. PROOF OF THEOREM 1.3

If (1.1) holds, then T 0(xK)≤ T 1(xK) and for all integers i≥ 0,

T i(xK)≤ T i+1(xK). (4.1)

If (1.2) holds, then T 1(xK)≤ T 0(xK) and for all integers i≥ 0,

T i+1(xK)≤ T i(xK). (4.2)

Since φ n(t)→ 0 as n→ ∞ for all t > 0 and φ is increasing, we have

φ(t)< t for all t > 0. (4.3)

By (1.9), (1.10) and (4.3), for all integers i≥ 0, one has

ρ(T i+1(xK),T i+2(xK))≤ φ(ρ(T i(xK),T i+1(xK)))≤ ρ(T i(xK),T i+1(xK)) (4.4)

and for all integers i≥ 1, one has

ρ(T i(xK),T i+1(xK))≤ φ
i(ρ(xK ,T 1(xK)))→ 0 as i→ ∞.

It follows that

lim
i→∞

ρ(T i(xK),T i+1(xK)) = 0. (4.5)

We claim that {T i(xK)}∞
i=1 is a Cauchy sequence. Let δ > 0. In view of (4.3), one has

φ(δ )< δ . (4.6)

By (4.5) and (4.6), one sees that there exists a natural number i0 such that

ρ(T i(xK),T i+1(xK))≤ δ −φ(δ ) (4.7)
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for all integers i≥ i0.
Now we show that ρ(T i(xK),T j(xK))≤ δ for all integers j > i≥ i0. To this end, assume that i≥ i0 is

an integer,
x ∈ K∩B(T i(xK),δ ) (4.8)

and
either x≤ T i(xK) or T i(xK)≤ x. (4.9)

It follows from (4.3), (4.7), (4.9) and (4.10) that

ρ(T (x),T i(xK))≤ ρ(T (x),T i+1(xK))+ρ(T i+1(xK),T i(xK))

≤ φ(ρ(x,T i(xK)))+δ −φ(δ )≤ δ .

Therefore

T (K∩B(T i(xK),δ )∩ ({x ∈ K : x≤ T i(xK)}∪{x ∈ K : T i(xK)≤ x}))⊂ B(T i(xK),δ ). (4.10)

By (4.10), if (1.1) holds, then T i1(xK)≤ T i2(xK) for all integers i2≥ i1≥ 0 and T j(xK)∈K∩B(T i(xK),δ )

for all integers j > i. By (4.10), if (1.2) holds, then T i2(xK) ≤ T i1(xK) for all integers i2 ≥ i1 ≥ 0 and
T j(xK) ∈ K ∩ B(T i(xK),δ ) for all integers j > i. Thus in both cases, ρ(T i(xK),T j(xK)) ≤ δ for all
integers j > i≥ i0, as claimed. Therefore {T i(xK)}∞

i=1 is indeed a Cauchy sequence and there exists

x̂ = lim
i→∞

T i(xK). (4.11)

Since graph(T ) is a closed set, we have T (x̂) = x̂.
Next we show that x̂ is the unique fixed point of T . To this end, assume that z ∈ K and T (z) = z. If

(1.1) holds, then T i(xK) ≤ z for all integers i ≥ 1 and x̂ ≤ z, and if (1.2) holds, then z ≤ T i(xK) for all
integers i≥ 1 and z≤ x̂. In both cases, ρ(z, x̂)≤ φ(ρ(z, x̂)). This implies that z = x̂.

Now let M and ε be positive. By (1.9) and (4.11), there exists a natural number n0 such that

φ
n0(M)< ε/2 (4.12)

and
ρ(T i(xK), x̂)≤ ε/2 for all integers i≥ n0. (4.13)

Assume that
x ∈ B(xK ,M)∩K, (4.14)

n > n0 is an integer and T n(x) is defined. If (1.1) holds, then we find from (1.4) that T i(xK) ≤ T i(x)
for all integers i = 1, . . . ,n. If (1.2) holds, then we find from (1.4) that T i(x) ≤ T i(xK) for all integers
i = 1, . . . ,n. In both cases, inequality (1.4) implies that, for all i = 0, . . . ,n−1,

ρ(T i+1(x),T i+1(xK))≤ φ(ρ(T i(x),T i(xK))). (4.15)

It follows from (4.12), (4.14) and (4.15) that

ρ(T n0(x),T n0(xK))≤ φ
n0(ρ(x,xK))≤ φ

n0(M)< ε/2. (4.16)

By (4.13), (4.15) and (4.16), for i = n0, . . . ,n, one has ρ(T i(x),T i(xK))≤ ε/2 and

ρ(x̂,T i(x))≤ ρ(x̂,T i(xK))+ρ(T i(x),T i(xK))< ε.

This completes the proof of Theorem 1.3.
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