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Abstract. We consider an elliptic variational-hemivariational inequality P in a p-uniformly smooth
Banach space. We prove that the inequality is governed by a multivalued maximal monotone operator,
and, for each A > 0, we use the resolvent of this operator to construct an auxiliary fixed point problem,
denoted P,.. Next, we perform a parallel study of problems P and P, based on their intrinsic equivalence.
In this way, we prove existence, uniqueness, and well-posedness results with respect to specific Tykhonov
triples. The existence of a unique common solution to problems P and P), is proved by using the Banach
contraction principle in the study of Problem P). In contrast, the well-posedness of the problems is
obtained by using a monotonicity argument in the study of Problem P. Finally, the properties of Problem
P, allow us to deduce a convergence criterion in the study of Problem P.

Keywords. Duality map; Maximal monotone operator; Resolvent operator; Tykhonov well-posedness;
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1. INTRODUCTION

In this paper, we deal with the well-posedness of variational-hemivariational inequalities in p-
uniformly smooth Banach spaces. The analysis we perform is carried out by using an approach
based on the intrinsic equivalence between the inequality problem and an associated fixed point
problem. Variational-hemivariational inequalities were introduced in the pioneering work of
Panagiotopoulos [1]. These are inequalities which have both convex and nonconvex structures
and represent a useful mathematical tool in the study of boundary value problems which arise
in physics, mechanics, and engineering sciences. The theory grew up rapidly and, currently, the
literature in the field is extensive. Basic references are [2—4]. Recent existence, uniqueness, and
convergence results, obtained by different functional arguments can be found in [5-7]. Results
on the numerical analysis of variational-hemivariational inequalities were obtained in [8—13]
for instance.

The concept of well-posedness for a minimization problem was introduced in [14] based on
two ingredients: the existence of a unique minimizer and the convergence to it of any minimiz-
ing sequence. Various extensions were considered in [15,16], [17-19], and [20-22] in the study
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of optimization problems, variational and hemivariational inequalities, and fixed point prob-
lems, respectively. A general well-posedness concept for abstract problems in metric spaces
was introduced in the recent paper [23]. Based on the notion of Tykhonov triple, this concept
was used in [24] in the study of hemivariational inequalities.

Recall also that the nonlinear analysis abound in equivalence results which allow us to study
a problem by performing the analysis of an auxiliary problem which, in general, has a different
structure. Some simple examples are the equivalence between a Cauchy problem for a differ-
ential equation and an integral equation, the equivalence between a variational inequality and a
minimization problem, and the equivalence between a nonlinear operator equation and a fixed
point problem, for instance.

The inequality problem we consider in this paper is stated as follows.

Problem P. Find u such that
uek, (Auyv—u)+o0)—ow)+ 2uv—u)>(f,v—u), Yvek. (1.1)

Here and everywhere below, unless stated otherwise, X is a real reflexive Banach space, and
(-,-) denotes the duality pairing between X and its dual X*. Moreover, K is a nonempty subset
of X,A: X - X", ¢:X - RU{+e}, j: X — Ris alocally Lipschitz function, and f € X*. In
addition, j°(u;v) represents the Clarke directional derivative of j at the point u, in the direction
veX.

Existence and uniqueness results in the study of Problem P have been obtained in many pa-
pers under various assumptions on the data. For example, Problem P was considered in [6]
under the assumptions that A is a pseudomonotone and strongly monotone operator, ¢ is a con-
vex lower semicontinuous function, and the Clarke subdifferential of the function j satisfies a
growth condition. The unique solvability of Problem P was proved by using a surjectivity re-
sult for pseudomonotone multivalued operators. Recently, Problem P was considered in [5,25]
under the assumptions that X is a Hilbert space, A is a strongly monotone Lipschitz continuous
operator, and ¢ is a convex continuous function. The unique solvability of the problem was
obtained in [5] by using a minimization principle and in [25] by using a fixed point argument
associated to the resolvent of a maximal monotone operator which governs the variational-
hemivariational inequality. Finally, recall that well-posedness results in the study of Problem P
were obtained in [24].

Our aim in the present paper is three folds. The first aim is to present a new existence and
uniqueness result in the study of variational-hemivariational inequality (1.1). The second and
the third aims are to prove the well-posedness of the inequality with respect to a given Tykhonov
triple and to obtain a convergence criterion in the study of this inequality, respectively. To this
end, we use the arguments based on the equivalence between Problem P and a fixed point
problem P;, which will be described below. The existence and uniqueness result we present
here is obtained by using the assumptions on the data, which are different to those used in [5, 6]
and, therefore, our work parallels [5,6]. On the other hand it extends the results in [25] since,
for instance, here we work in the framework of p-uniformly smooth Banach spaces. In addition
to the unique solvability of Problem P, we provide its well-posedness as well as necessary and
sufficient conditions, which guarantee the convergence of a sequence to its solution.

The rest of the paper is organized as follows. In Section 2, we recall some basic definitions
and preliminary material, which are be used in the rest of the paper. In Section 3, we introduce a
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fixed point problem P, associated to the resolvent of a maximal monotone operator constructed
with the data of Problem P. In Section 4, we state and prove the equivalence of problems P
and P, and then we prove the existence of unique common solution for these problems. Next,
in Section 5, we study the well-posedness of problems P and P; with respect to appropriate
Tykhonov triples. We start with an equivalence result, and then we prove the corresponding
well-posedness results. In Section 6, we state and prove a convergence criterion to the solution
of Problem P. We end this paper with Section 7 in which we present some concluding remarks.

2. PRELIMINARIES

In this section, we introduce some notations and preliminary results, which are used in the
rest of the paper. For more details and proofs we refer the reader to [26—28]. Everywhere below,
weuse || -||x and || - ||x+ for the norm on the spaces X and X*, respectively, and the symbols “—”,
“—” represent the strong and the weak convergence in X or X*. Moreover, we use notation Ox
and Ox+ for the zero element of X and X*, respectively, X;;, for the space X* equipped with weak
topology and int B for the interior of the set B C X, in the strong topology of X. All the limits,
lower limits and upper limits below are considered when n — oo even if we do not mention it
explicitly.

We start with recalling some basic definitions for single-valued operators.

Definition 2.1. The operator A : X — X ™ is said to be:
(1) demicontinuous if u, — u in X implies Au,, — Au in X*;
(2) p-monotone for some p > 0 if there exists constant m > 0 such that

(Au—Av,u—v) > mullu—v|%, Vu,veX;
(3) a contraction if there exists constant 0 < k < 1 such that
|Au—Av||x < k|lu—v|x, Vu,veX.
Next, we move to some definitions concerning nonsmooth functions defined on the space X.

Definition 2.2. Let j: X — R be a locally Lipschitz function. Then, the Clarke directional
derivative of the j at the point # € X in the direction v € X is defined by
0

J (u;v) = limsup jwtAv) = j(w) :
w—u,A0 A

Moreover, the Clarke gradient of j is the set-valued operator dj : X — 2X" defined by
dj(u) = {‘g’ eX* : Puv) > (Ev) Yy EX}, VueX.

For the Clarke directional derivative and gradient of a locally Lipschitz function, we have the
following properties.

Proposition 2.1. Let j: X — R be a locally Lipschitz function on X. Then

(1) for all u € X, the Clarke gradient d j(u) is a nonempty convex and weakly compact
subset of X*;
(2) the graph of the Clarke gradient d j is closed in X x X} topology;

(3) forallu,v € X, jo(u;v):max{(é,w : §€8j(u)}.
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For a function ¢ : X — RU {+e}, we use the notation D(¢) for its effective domain, i.e.,

D(p) = {u €X :ou)< +o<>}.
In addition, we say that ¢ is proper if D(¢) # 0.

Definition 2.3. A function ¢ : X — RU {40} is said to be lower semicontinuous (1.s.c.) if, for
any sequence {u,} C X such that u, — u in X, the following inequality holds:

liminf @ (u,) > @(u).

Definition 2.4. Let ¢ : X — RU {400} be a proper convex function. Then the subdifferential
of ¢ is the set-valued operator ¢ : X — 2%, defined by

2°p(u) = {T[ eX*:o(v)—o(u)>(n,v—u) ‘V’VGX} VueX.
Definition 2.5. Given a nonempty subset K of X, the function I : X — R U {400} defined by
0 ifuck,
Ix(u) =
k() {+oo ifudK
is called the indicator function of set K.

It is well known that if subset K of X is nonempty closed and convex, then the indicator
function Ix is proper, convex, and lower semicontinuous. In the rest of this paper, we use the
notation d°(¢ + Ix ) (u) for the subdifferential of the convex function ¢ + Ix at point u. We also
recall the following two results, proved in [10] and [29], respectively.

Proposition 2.2. Let X be a Banach space, @1 : X — RU{+eo}, and ¢ : X — RU {400}
be proper convex and lower semicontinuous functions. Assume that there exists an element
uo € D(@1)ND(@2) at which @y or @, is continuous. Then d°(Q1+ @2)(u) = 3@ (1) + P2 (u),
VueX.

Proposition 2.3. Let C be a nonempty closed convex subset of X, C* a nonempty closed convex
bounded subset of X*, W : X — RU{+e} a proper convex and lower semicontinuous function,
and u € C. Assume that, for each v € C, there exists u*(v) € C* such that (u*(v),v —u) >
y(u) — y(v). Then, there exists u* € C* such that (u*,v—u) > y(u) —y(v),Vv e C.

Consider now a multivalued operator T : X — 2%, and recall that its domain D(T'), range
R(T), and graph Gr(T) are the sets defined by

D(T):{MEX : Tu#@},
R(T):{u*EX* : Jue D(T) s.t. u*ET(u)},

Gr(T) = {(u,u*) eD(T)xX* : u* € Tu}.
Moreover, recall the following definitions.

Definition 2.6. The operator 7 : X — 2X is said to be
(1) p-relaxed monotone for some p > 0 if there exists a constant oy > 0 such that

(i —wz,my —wp) > —or|lwy —waly,  V(wr,u7), (uz,u3) € Gr(T);
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(2) monotone if (u] —uy,u; —uz) >0, V(uy,uj), (uz,u3) € Gr(T);
(3) maximal monotone if it is monotone and for any v € X and v* € X*
y
(W —v-u—vy>0 YueD(T), u" €Tu,
it follows that v € D(T) and v* € Tv.

Below we shall use the following results concerning the maximal monotone operators.

Proposition 2.4. Assume that y : X — RU{+co} is a proper, convex, and lower semicontinuous
function. Then the subdifferential operator d°y : X — 2X " is maximal monotone.

Proposition 2.5. Assume that T : X — 2% " is a monotone operator such that, for every u € X,
Tu is nonempty convex and weakly closed set of X*. Moreover, assume that ,for all u,v € X, the
mapping A — T (Au+ (1 — A)v) has a graph which is closed in [0, 1] x X;. Then the operator
T is maximal monotone.

Proposition 2.6. Let Ti, T» : X — 2% " be two maximal monotone operators such that int D(T;) N
D(T3) # 0. Then the sum Ty + Ty : X — 2X" is a maximal monotone operator, too.

Denote in what follows by U = {u € X : |ju||x = 1 } the unit sphere in X. The properties of
the Banach space X, including those of its duality map, play an important role in the rest of the
paper. We now proceed with the following additional definitions and results.

Definition 2.7. The Banach space X is said to be strictly convex if
u+v
2

X

Definition 2.8. The modulus of smoothness of X is the real-valued function py defined by
1
px(t) = sup{ §(||u+v||x+ lu—v|x)—1:uecU,||x < T} Vt>0.

Definition 2.9. Let p > 1 be fixed. A Banach space X is said to be p-uniformly smooth if there
exists a constant k > 0 such that px(7) < kt? for all T > 0.

Remark 2.1. Let Q be a smooth domain in R?. Following [30] and using standard notation, we
recall that, if 1 < p < 2, then the spaces [7(Q), LP(Q) and W57 (Q) all are p-uniformly smooth.
Moreover, if p > 2 then the spaces [7(Q), L (Q), and W*?(Q) are 2-uniformly smooth.

Definition 2.10. The duality map of X is the multivalued operator J : X — 2%~ defined by
Ty = {ur € X2 () = ully = 1}

The properties of the space X provide important properties of the duality map as it causes
from the following result, proved in [30].

Proposition 2.7. Let X be a p-uniformly smooth Banach space. Then there exists a positive
constant Ly such that ||J(u) —J(v)||x+ < LJHu—ng_l, Vu,v € X.

Moreover, it is known that every reflexive Banach space X can be endowed with an equivalent
norm such that both X and X* are strictly convex. In addition, the proof of the following results
can be found in [27].
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Proposition 2.8. Let the dual space X* be strictly convex. Then the duality map J is single-
valued, surjective, and maximal monotone.

Proposition 2.9. Let X be a strictly convex reflexive Banach space with strictly convex dual X*,
andletT :D(T)C X — 2X" be a maximal monotone operator. Then, for each A > 0, the inverse
operator (J+AT)~': X* — D(T) is well-defined and single-valued.

3. A FIXED POINT PROBLEM

In this section, we provide an equivalence result between Problem P and a family of fixed
point problems. To this end, we consider the following assumptions on the data.

X is a strictly convex reflexive Banach space with strictly convex dual X*.  (3.1)

X is a p-uniformly smooth Banach space with p > 1. (3.2)
K is a closed convex subset of X and int K # 0. (3.3)
A: X — X* is demicontinuous and p-monotone with my > 0. (3.4)

¢@: X — RU{+oo}is convex lower semicontinuous such that K C D(¢). (3.5)

j: X — Ris such that

(a) j is locally Lipschitz continuous;

(3.6)
(b) there exists ¢¢; > 0 such that
jo(ul;uz —I/ll) +j0(u2;u1 —uz) < a; ||u1 —I/t2||§ Yup,u €X.
my > Q. (3.7)
fexr. (3.8)

We note that (3.6)(b) is equivalent to the p-relaxed monotonicity condition of the multivalued
operator dj : X — 2X" with constant o;. A proof of the equivalence can be found in [4, p.124].

We now proceed with a result which shows that Problem P is governed by a maximal mono-
tone operator.

Theorem 3.1. Assume (3.3)—(3.8). Then the operator S : X — 2X" defined by
Su=Au+9dju)+0(o+Ix)(u)—f, VueX (3.9)
is a maximal monotone operator.

Proof. We use the arguments similar to those used in the proof of the Lemma 3.1 in [25].
Nevertheless, for the convenience of readers we provide the details, structured in three steps, as
follows.

(i) The operator A+9j : X — 2% is maximal monotone. To prove this statement, we start by
using the p-monotonicity of the operator A with constant my, the p-relaxed monotonicity of the
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operator d j with constant i» and the smallness condition (3.7) to see that
(Autu™) — (Av+v*),u—v) = (Au—Av,u —v) + (u* —v*,u—v)

(ma — o) lu—v|[%

>
>0,

for all u,v € X, u* € dj(u) and v* € dj(v). We conclude from here that operator A+dj: X —
2X" is monotone.

Moreover, we deduce from Proposition 2.1(1) that {Au + d j(u)} is a nonempty, convex, and
weakly closed subset in X*, for every u € X .

In addition, let u,v € X and, for each n € N, consider an element x,, such that

Xn € (A+9))(Agu+ (1—=2A,)v).

Suppose that A, — A in [0, 1], x, — x in X* as n — . Since the operator A is demicontinuous,
one obtains
xp—AAgu+(1—2A,)v) = x—A(Au+(1—24)v) in X",

Moreover, the closedness of the graph of dj(-) in X x X}, guaranteed by Proposition 2.1(2),
implies that x € (A+ dj)(Au—+ (1 —A)v). We conclude from here that the mapping A — (A +
dj)(Au+ (1—A)v) has a closed graph in [0, 1] x X}

We are now in a position to use Proposition 2.5 in order to see that the operator A+dj: X —
2X" is maximal monotone.

(ii) The operator A+ 0 j+0¢(@ +1Ix) : X — 2X" is maximal monotone. Indeed, we deduce from
(3.3), (3.5), and Proposition 2.4 that operator d°(¢ + Ix) is maximal monotone. Furthermore,
it is easy to see that intD(A+dj) ND(d°(@ + Ix)) = K # 0. Thus, using Proposition 2.6, we
deduce that the operator A+ dj + 9¢(¢ +Ix) : X — 2X" is maximal monotone, as claimed.

(iii) End of proof. We now use step (ii) to see that the operator S defined by (3.9) is maximal
monotone, which completes the proof. 0

Theorem 3.1 and Proposition 2.9 show that, under the assumptions (3.1) and (3.3)—(3.8), for
each A > 0 we are in a position to consider the resolvent operator S : X — K defined by equality

Spu=(J+AS)"'(Ju), VueX. (3.10)
We associate to this operator the following fixed point problem.
Problem P). Find an element u € K such that u = Sy u.

In the next section we prove that there exists an intrinsic link between problems P, and P.
We shall use this link in order to deduce existence, uniqueness and wll-posedness results.

4. EXISTENCE AND UNIQUENESS RESULTS

We start with the following equivalence result.

Theorem 4.1. Assume (3.1), (3.3)—(3.8), and let A > 0. Then u is a solution of Problem P if
and only if it is a solution of Problem P),.
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Proof. It follows from the definition (3.10) that, for any u € X, the following equivalences hold:
w=Su <= wek, JueJw+ASw

1
< wEeKk, I(Ju—]w) € Sw.

Moreover, using the definition (3.9) of the operator S combined with the definitions of Clarke
gradient d j and subdifferential 0@, we deduce that

1
wekK, —(Ju—Jw)eSw <<= wek,

(Aw,y —w) +o(v) — @(w) + P (wiv —w) > (f + Ju;tjw,v—w), VveK.
We deduce from above that
w=Su <+= wek,
<Aw,v—w>—|—g0(v)—(p(w)+j0(w;v—w)2<f—|—w,v—w>, Vv eK. &1
Theorem 4.1 is now a direct consequence of equivalence (4.1). 0

Note that Theorem 4.1 represents an equivalence result which does not guarantee the unique
solvability of problems P and P, . For this reason, we continue with the following existence and
uniqueness result.

Theorem 4.2. Assume (3.1)—(3.8). Then Problem P has a unique solution u € K. Moreover, u
is the unique solution to Problem Py, for each A > 0.

The proof of the Theorem is based on the following preliminary result.

Lemma 4.1. Assume (3.1)—(3.8), and let A > ﬁ. Then, Problem P has a unique solution
uck.

Proof. We shall use the Banach fixed point principle. To this end, we prove that, for each
A > mAL_’ @ the operator S, : X — K defined by (3.10) is a contraction on X. Let uj,u> € X be

arbitrary, denote wi = Sy u;, wo = S up, and let v € K. Using (4.1), it follows that wi, w, € K
and, for any v € K, the inequalities below hold:

J uy — J w1
A

Juy —JIwo

— Y

We now take v =w» in (4.2) and v = wy 1n (4.3), and then we add the resulting inequalities to

see that

(Awi,v—wi) +@(v) = @(wi) + [ (wisv —w1) = (f + vowy), (42

(Awa, v —wa) + @(v) — @(w) + O (waiv —wp) > (f + —w). 4.3)

(Awy —Awy,wy —wi) + O (wiswa —wi) + 2 (waswy —wo)

4.4)

1 1
> I(Jul —Juz,wz—w1>+I(sz—le,wz—wQ.

Next, we use the p-monotonicity of operator A and assumption (3.6)(b) to deduce that

(Aw) — Awo,wy —wy) —I—jO(wl;wz —w1)+j0(wz;w1 —wy) < (aj—my)||lwi —wa|l}.  (4.5)
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In addition, using the Cauchy-Schwarz inequality, Proposition 2.7 and the monotonicity of du-
ality map, we find that

1 1 Ly _
I<JM1 —Juy,wo —W1> + I(JWZ —Jwi,wy —W1> > _Tuul — u2||§7( 1||W1 —WZHX. (4.6)
We now combine inequalities (4.4)—(4.6) and use assumption (3.7) to see that
Ly =)
w1 —wallx < <—) up —up||x. 4.7)
o =2l < (5 Sgy) e =l

Ly @ > 0. Then, it follows that

ma—

Recall that p > 1 and A >

L 7T
0< ()" <1
l(mA —a j)
Thus inequality (4.7) shows that operator S, : X — K is a contraction on X. We now use the
Banach fixed point theorem to obtain the unique solvability of Problem P . 0

We now proceed with the proof of Theorem 4.2.

Proof. Let Ay > mAL_’ o Then we use Lemma 4.1 to see that Problem Py has a unique solution
u € K. Therefore, it follows from Theorem 4.1 that u represents the unique solution of Problem
P, which concludes the first part of the theorem. The second part follows from the unique solv-
ability of Problem P. Indeed, since Problem P has a unique solution u, Theorem 4.1 guarantees

that u is also the unique solution of Problem P, for each A > 0. U
We end this section with the following remark.

Remark 4.1. A careful analysis of the proof of Lemma 4.1 reveals that, under assumptions
(3.1)—(3.8), the operator S is Lipschitz continuous for each A > 0. Indeed, (4.7) shows that

L ))'”||u1 —lx 4.8)

Syt Syl <
|| AUl AMZHX = l(mA—Ot]

for each uy, up € X. We use inequality (4.8) in Section 6 below.

5. WELL-POSEDNESS RESULTS

In this section, we investigate the .7 -well-posedness of problems P and P,. To this end,
for a generic Problem & defined in the Banach space X, we recall the following definitions,
introduced in [23].

Definition 5.1. A Tykhonov triple is a mathematical object of the form .7 = (I,Q,%’), where 1
is a given nonempty set, Q : I — 2% is a set-valued map such that Q(g) # 0 for each £ € I, and
% is a nonempty subset of sequences with elements in /.

Definition 5.2. Given a Tykhonov triple .7 = (I,Q,%), a sequence {u,} C X is called a .7-
approximating sequence if there exists a sequence {g,} € €, such that u, € Q(g,) for each
neN.

Definition 5.3. Given a Tykhonov triple .7 = (I,Q,%), Problem & is said to be .7 -well-
posed (or, equivalently, well-posed with .7) if it has a unique solution u € X and every .7 -
approximating sequence converges strongly to u in X.
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Given a Tykhonov triple 7 = (I,Q,%), we refer to I as the set of parameters. A typical
element in it is denoted by €. Moreover, we refer to the family of sets {Q(€) }¢<; as the family of
approximating sets. It is worth mentioning that .7 -approximating sequences always exist since,
by assumption, € # 0. In addition, for any sequence {€,} € € and any n € N, the set Q(g,) is
nonempty. We also remark that the concept of approximating sequence above depends on the
Tykhonov triple .7 and, for this reason, we use the terminology “.7 -approximating sequence”.
As a consequence, the concept of well-posedness for Problem &7 depends on the Tykhonov
triple .7 and, therefore, we refer to it as “well-posedness with .7 or “.7 -well-posedness”, as
mentioned in Definition 5.3. We shall use this concept for both problems P and P; .

In what follows, we assume (3.1)—(3.8) and fix A > 0. We introduce two specific Tykhonov
triples, in the study of problems P and P, denoted by .7 = (I,Q,%) and .7 ) = (I,Q,,%),
respectively. The set of parameters / and the set ¢ are defined as follows:

I:R—H
%z{{gn}nzenel VneN, & —0 as n—>°<>}.

Next, for any € € I, we define the approximating sets Q(€) and Q, (€) by equalities:
ueQ(e) <= uck and
(Au,v —u) +o(v) — @) + 2 (u;v —u) +g|lv—ullx > (f,v—u), VveK,

ueQ,(e) <= ueX and |u—S)ulx <e.

Recall that, here and below, S, denotes the resolvent operator (3.10). Also, note that Theorem
4.2 guarantees that both problems P, and P have a unique common solution u € K. Then, it
is easy to see that u € Q(¢€) and u € Q, (&) for any € > 0, which implies that Q(€) # 0 and
Q) (€) # 0 for any € > 0. Therefore, .7 = (I,Q,%) and .7, = (I,Q,%) are Tykhonov triples
in the sense of Definition 5.1.

The following result shows the equivalence between the .7 -well-posedness of Problem P and
the .7, -well-posedness of Problem P; .

Theorem 5.1. Assume (3.1)—(3.8) and A > 0. Then Problem P is 7 -well-posed if and only if
Problem Py, is 7 ) -well-posed.

The proof of Theorem 5.1 is based on two preliminary results that we state and prove in what
follows.

Lemma 5.1. Assume (3.1)—(3.8), let A > 0, and consider the following statements.

u € K and there exists € > 0 such that 5.0)
(Au,v —u) +o(v) — @(u) + jO(u;v —u) +€llv—ullx > (f,v—u), VveK. .
uckK and

1

—1 (5.2)
Ju—Spullx < (75 )"

Then (5.1) implies (5.2).
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Proof. Assume (5.1). Then, we deduce from Proposition 2.1(3) that, for each v € K, there exists
&, € dj(u) such that

(AutGyv—u) + 0(v) — @(u) +&llv —ullx > (f,v—u).

In addition, from Proposition 2.1(1), we deduce that the set {Au+& —f: & € dj(u)} is a
nonempty, closed, convex, and bounded subset in X*. Since the function

v(v) = o) +elv—ulx

is proper, convex, and lower semicontinuous on X, it follows from Proposition 2.3 that there
exists & € d j(u) such that

(Aut&v—u) +o(v) —@u) +ellv—ulx > (f,v—u), Vvek. (5.3)

Note that the element & (as well as the function ¥ above and the functions M, P, Q below)
depend on u. Nevertheless, for simplicity, since u is fixed, we do not mention here this depen-
dence. We now use (5.3) to find that

ou) <o)+ (Au+&—fv—u)y+e|lv—ullx, Vvek.
We also consider the function M : X — RU {+oo} defined by
M®v)=¢(v)+P(v)+eQ(v), VveX,
where P(v) and Q(v) are the functions on X defined by
P(v) = (Au+&—fv—u), Q) =|v—ullx, YveXx.

It is clear that the function M is proper convex lower semicontinuous, and « is a minimizer of M
on K, which implies that Ox+ € d°(M +Ix)(u). Hence, using the definition of M and Proposition
2.2, we deduce that u € K and

Ox- € (@ +1k)(u) +Au+& — f+€9°0(u).

Thus, using the inclusion & € d j(u) we conclude that there exists an element 1 € d°Q(u) (which
depends on u) such that

Ox+ € (@ +1Ig)(u) +Au— f+9j(u)+€n.
Next, from the definition of operator S, one has —en € Su, which implies that
u=J+AS) "' (Ju—2en). (5.4)

We now claim that operator (J+AS)~!: X* — K is Lipschitz continuous. Indeed, let uy,u; €
X* be arbitrary and denote w; = (J +AS)~!(u1) and wy = (J 4+ AS) ' (uz). Using arguments
similar to those used in the proof of (4.1), it follows that wi, w, € K. For any v € K, the
inequalities below hold:

.y
(Awi,v—wi) + @(v) —(p(w1)+j0(w1;v—w1) >(f+ %,v—wﬁ, (5.5)

V

uy —Jwo

1 LV —Wo). (5.6)

(Awz, v —w2) + @(v) — @(w2) + j (waiv —w2) > (f +



578 R. HU, M. SOFONEA

We now take v = wy in (5.5) and v = wy in (5.6), and then we add the resulting inequalities to

see that 0 0
(Aw) —Awa,wo —wi) + J (wiswp —wyp) + J° (waswp — wp)

1 1 (5.7)
> I<u1 —M2,W2—W1> +I<JW2 —JWl,Wz—W1>.
Next, we use the p-monotonicity of operator A and assumption (3.6)(b) to deduce that
(Awy —Awg, wy —wi) + jO (wiswy —wi) + jO (waswi —wa) < (a; —ma) [wi —wa|[§. (5.8)

Moreover, using the Cauchy-Schwarz inequality and the monotonicity of duality map, one has

1 1 1
I<u1 —Uur,wp —W1> + I<JW2 —JWl,Wz —W1> Z —IHul —l/tsz*le —Wsz. (5.9)
We now combine inequalities (5.7)—(5.9) to find that
1 = =
J+A8)uy) — (J+A8)~! < (—)” — " 5.10
0428 ) = 0 +48) )l < (55— 05) " b~ el (5.10)

Finally, we use (5.4) and (3.10) to see that
lu—Syullx = |(J +A8) ™" (Ju— Aen) — (J +A8) ™' (Ju) |x.
Using inequality (5.10) with u; = Ju — Aen and uy = Ju we deduce that

1

AN
)" imig" (5.11)

o= Spalx < (
m

Recall now that ) € 9°Q(u), which implies that (n,v —u) < ||[v —ul|x for all v € X or, equiv-
alently, (n,w) < |lwl|x for all w € X. Then, ||n||x+ = supy, < [{n,w)| < 1. Thus inequality
(5.11) shows that the statement (5.2) holds. O

Lemma 5.2. Assume (3.1)—(3.8), let A > 0, and consider the following statements.

u € X and there exists € > 0 such that
(5.12)
||u—S;LI/t||x <eE.
w € K and (Aw,v —w) + @(v) — @(w) + O (w;v —w)
+ &Ly —wllx > (f,y—w) VveK, (5.13)

where w = S u.
Then (5.12) implies (5.13).

Proof. Assume (5.12), let w = Sy u, and let v be an arbitrary element such that v € K. Then
(4.1) implies that u € K and

Ju—J
(A=) + @) = )+ 2 (wiv—w) 2 (o fymw). (S.14)
Moreover, the Cauchy-Schwarz inequality, Proposition 2.7 and (5.12) yield
Ju—Jw 1
{ V= w) 2 = |Ju—Jwllx [y —wlix

A A

1 (5.15)

L; p—1 ep Ly
> = u— il = wilx = =5 v - wix.
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We now combine inequalities (5.14) and (5.15) to deduce that
ep -7 J
A

which concludes the proof. 0

(Aw,y —w) +@(v) = @(w) + j (wiv —w) + v=wlx = (f,v=w),

We are now in a position to provide the proof of Theorem 5.1 .

Proof. Assume that Problem P is .7 -well-posed. Then Problem P has a unique solution u € K,
and Theorem 4.1 guarantees that u is the unique solution to Problem P, too. Let {u,} C X
be a .7, -approximating sequence. Then there exists a sequence 0 < g, — 0 such that ||u, —
Saun|lx < €, Vn € N, which implies that

[t — Spn|x — 0. (5.16)
Moreover, Lemma 5.2 implies that, for any v € K and n € N,
(AW, v —wn) +@(v) = @(wn) + j* (Wasv —wy) + &1|[v—wallx = (f,v—wn)

—1
with w, = Syu, and €, = 8’51—1". It follows from here that {w,} C K is a .7 -approximating
sequence for Problem P. Since Problem P is .7 -well-posed, we deduce that

|lwn — ul|x — 0. (5.17)

Therefore, writing ||u, — u||x < ||un — Spunllx + ||Spun — ul|x, and, using equality w, = Sy u,
together with convergences (5.16) and (5.17), we deduce that u, — u in X. This shows that
Problem P is .7 -well-posed.

Conversely, assume that Problem P, is .7 -well-posed. Then Problem P, has a unique solu-
tion u € K, which is also the unique solution to Problem P. Let {u,} C K be a .7 -approximating
sequence. Then, Lemma 5.1 shows that {u,} is a .7 -approximating sequence. Using the 7 -
well-posedness of Problem P, one sees that {u, } converges to u in X. one concludes from here
that Problem P is .7 -well-posed, which concludes the proof. O

Note that Theorem 5.1 represents an equivalence result which does guarantee neither the
T -well-posedness of Problem P, nor the .7, -well-posedness of Problem P). These well-
posedness results are provided below.

Theorem 5.2. Assume (3.1)—(3.8) and A > 0. Then Problem P is 7 -well-posed and Problem
Py is T -well-posed.

Proof. The existence of a unique solution u € K is guaranteed by Theorem 4.2. Let {u,} C X
be a 7 -approximating sequence. Then, there exists a sequence 0 < g, — 0 such that u, € Q(g,)
foreachn € N, i.e., u, € K and

(Aup,v—uy) +o(v) — @(uy) —l—jo(un;v—un) +&||v—unl|lx = (f,v—un), (5.18)

forallve K and n € N. Let n € N be fixed. We take v=u in (5.18) and v = u, in (1.1), and
then add the resulting inequalities to find that

(At — Auyu — ) + J0 (s 10— ) + 70 (w310, — 1) + &y — u||x > 0. (5.19)
We now use the p-monotonicity of operator A and assumption (3.6)(b) to deduce that

(Aup — Au,u — up) +j0(un;u—un)+j0(u;un —u) < (Ocj—mA)Hun—qu(. (5.20)
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Next, we combine inequalities (5.19) and (5.20) and use assumption (3.7) to see that
1

& =1
Jutn =l < ()"
my — O

Therefore, since €, — 0, we deduce that ||u, — u||x — 0. Using Definition 5.3, we deduce that
Problem P is .7 -well-posed. Finally, we use Theorem 5.1 to find that Problem P, is .7 -well-
posed. 0

6. A CONVERGENCE CRITERION

We assume in what follows that (3.1)—(3.8) hold, and we denote by u the solution of Prob-
lem P obtained in Theorem 4.2. It follows from Theorem 5.2 and Definition 5.3 that any .7 -
approximating sequence converges in X to u. This property given rise to the following question.

(Q1) Are there sequences {u, } C X which converge in X to u and which are not  -approximating
sequences?

To provide an answer to this question, we start by considering an elementary example.

Example 6.1. Let X be a Hilbert space endowed with inner product (-,-)x and associated norm
|- [[x- In addition, assume that K satisfies condition (3.3). It is known that the duality map
J : X — X* is the isometry given by the Riesz representation theorem and, therefore,

(Ju,v) = (u,v)x, VYu,veX. (6.1)

Let a and b be positive constants, f € X*,andletA: X - X", ¢: X - R, j: X - R, g€ X be
defined by

b
Au=alu, @u)=0, ju)=7|ul}, Vuex, f=Jg. (6.2)

Then, it is easy to see that

vy =bu,v)x, Yu,veX. (6.3)
Moreover, conditions (3.1)—(3.8) are satisfied with p =2, my = a, and «; = 0. We now use
(6.1)—(6.3) to deduce that, with the choice (6.2), inequality (1.1) can be written, equivalently,

MEK’ ((a‘i_b)M,V—M)XZ(g,V—M)X, Vv eKk.

The solution of this inequality is given by

8
—p (—) 6.4
=G +b ©4
where, here and below, Px : X — K represents the projection operator on K.
Next, let A > 0, u € X, and let w = S, u. Then, using similar arguments as above, we deduce

from (4.1) that w is the unique element of X which satisfies the inequality

weK, ((a+b)w,v—w)xZ(g—kuzw,v—w)x, Vv eK.
Therefore,
Ag+u
=Su=F (—) VueXx. 6.5
w=wo)u Kl(a+b)+1 uc (6.5)

The interest in formulas (6.4) and (6.5) arises in the fact that they provide an explicit formula
for the solution of inequality (1.1) and the corresponding resolvent operator S , as well.
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We now use Example 6.1 to provide a positive answer to question (Q;) above.

Example 6.2. Keep the assumptions and notation in Example 6.1 and, in addition, assume that
K is the closed ball of radius 1 centered on Oy, i.€.,

K:{veX:Hvqul}. 6.6)
It is known that the projection operator Px on the set (6.6) is given by
—z i
Pez = { THIx ‘1f Izllx>1, (6.7)
4 if [[z]lx < 1.

Take g € X such that ||g||x = a+ b, and consider the sequence {u,} C X defined by
1\ s
— (1 —>—, VneN. 6.8
tn ( + n/a+b " ©8)

Then, it is easy to see that ||u,|[x = 1 4+ 1 > 1 and, therefore u, ¢ K for any n € N. This implies
that {u,} C X is not a .7 -approximating sequence. Nevertheless (6.4) and (6.7) imply that
u = 2%%. Using (6.8), we deduce that the convergence u, — u in X holds.

Since the answer to question (Q) is positive, we are in a position to formulate in the second
question, as follows.

(Q2) Which is the necessary and sufficient condition for a sequence {u,} C X to converge in X
tou?

An answer to this question is given by the result below.

Theorem 6.1. Assume (3.1)—(3.8) and let {u,} C X. Then u, — u in X if and only if, for each
A >0, the sequence {u,} is a .7 ) -approximating sequence, i.e., Sy u, —u, — Ox in X as n — co.

Proof. Assume that u, — u in X, and let A > 0. Moreover, for each n € N, denote w,, = Sj uy,.
We use Theorem 4.1 to see that u = Sy u. Thus

[tn — Spunllx < |[un —ullx +[[Spu—Srun|x, VneN. (6.9)
Now, it follows from (4.8) that there exists k; > 0 such that
[Sau—Saunllx <kpllun—ulx, VneN. (6.10)
We now combine inequalities (6.9) and (6.10) to deduce that
[un = Spun|lx < (L+kp)|[un—ullx, VneN.
Using notation &, = (1 +kj)||u, — u||x, we obtain that
|ty — Syunl|x < &, VneN. (6.11)

Now, since u, — u in X, we find that &, — 0. Therefore, (6.11) shows that the sequence {u,}
is a .7 -approximating sequence.
Conversely, assume now that A > 0, and {u, } is a .7, -approximating sequence. Then,

S,lun—un—>OX in X. (6.12)
Next, the .7, -well-posedness of Problem P, guaranteed by Theorem 5.2, implies that
Spun —u  inX. (6.13)
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We now write ||u, — u|x < ||un — Sy un||x +||Syun — u||x and use the convergences (6.12), (6.13)
to see that u,, — u in X, which concludes the proof. U

We underline that Theorem 6.1 represents a criterion of convergence since it indicates a
necessary and sufficient condition, which guarantees the convergence of a sequence {u,} C X
to the solution of variational-hemivariational inequality (1.1). Below we provide an explicit
form of this convergence criterion within the framework of Example 6.1.

Example 6.3. Keep the assumptions and notation in Example 6.1 and let {u,} C X. We now
use (6.5) to see that
Ag+uy,
Sytty =P, <—
It follows now from Theorem 6.1 that the sequence {u, } converges to the solution (6.4) if and
only if

>, VneN. (6.14)

o — P, (M

"KL a+b) + 1

We now move to the framework of Example 6.2 and check the validity of the criterion (6.15)
for the sequence (6.8).

) 0y inX. (6.15)

Example 6.4. Keep the assumptions and notation in Example 6.2, and let {u,} C X be given
by (6.8). We use (6.14) to see that in this case

Aa+b)+1+1 ¢
Ala+b)+1 a+b
Therefore, since ||g||x = a + b, equalities (6.16) and (6.7) imply that

Syin = Py , VneN. (6.16)
( )

Sytty = (6.17)

a+b’
We now use (6.8) and (6.17) to see that u,, — S u, — Ox which represents a validation of the
convergence results u, — u in X, obtained in Example 6.2.

7. CONCLUSION

In this paper, we considered an elliptic variational-hemivariational inequality (Problem P) in
a p-uniformly smooth Banach space X. We proved that this problem is governed by a maximal
monotone operator S (Theorem 3.1). This allowed us to define the resolvent operator S, for any
A > 0 and to introduce the problem of finding a fixed point of the operator S; (Problem P,), as
well. We then performed an analysis of problems P and P,, carried out in several steps. First,
we proved that the unique solvability of Problem P is equivalent with the unique solvability of
Problem P, (Theorem 4.1), then we proved the unique solvability of Problem P, and deduced
the existence of a unique solution #, common for problems P and P; (Theorem 4.2). Based on
this result, we introduced the Tykhonov triples .7 and .7, and we proved that well-posedness
of Problem P with .7 is equivalent with the well-posedness of Problem P; with .7, (Theorem
5.1). Moreover, we proved the .7 -well-posedness of Problem P and deduced from here the .7 -
well-posedness of Problem P, (Theorem 5.2). Finally, we used Problem P, again, in order to
deduce a convergence criterion to the solution of Problem P.

A careful analysis based on the description above indicates that the results on Problem P have
been obtained by proving the corresponding results for Problem P; and vice versa. In other
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words, the analysis of problems P and P; was carried out in parallel, based on the intrinsic
relationship which exists between these problems. Besides the existence, uniqueness and well-
posedness results presented, the method we used, based on the parallel study of problems P and
P, represents the main trait of novelty of the current paper.
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