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ON THE STRONG CONVERGENCE OF A PERTURBED ALGORITHM TO THE
UNIQUE SOLUTION OF A VARIATIONAL INEQUALITY PROBLEM
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Abstract. We introduce a general iterative algorithm that generates strongly convergent to the unique
solution of a general type of variational inequality over the set of the fixed points of a nonexpansive
mapping. The strong convergence of the algorithm is established under general and simple conditions
on the parameters. Moreover, we study a perturbed version of the algorithm and provide some numerical
experiments that highlight the effects of the parameters on the stability of the algorithm and its rate of
convergence.
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1. INTRODUCTION

Throughout this paper, H is assumed to be a real Hilbert space with inner product 〈., .〉
and associated norm ‖.‖ , Q is assumed to be a closed, convex, and nonempty subset of H ,
PQ : H → Q is assumed to be the metric projection onto Q, T : Q → Q is assumed to be
a nonexpansive mapping (i.e., ‖T x−Ty‖ ≤ ‖x− y‖ for all x,y ∈ Q) such that C := Fix(T ) =
{x ∈ Q : T x = x} is nonempty, f : Q→ H is assumed to be a Lipschitzian mapping with
coefficient α ≥ 0 (i.e. ‖ f (x)− f (y)‖ ≤ α ‖x− y‖ for all x,y ∈ Q), and F : Q→H is assumed
to be a Lipschitizian mapping with coefficient κ > 0. In addition, F is assumed to be strongly
monotone with coefficient η > 0, which means that

〈F(x)−F(y),x− y〉 ≥ η ‖x− y‖2 for all x,y ∈ Q.

We also assume that α < η . Then it is easily seen that the operator g := F − f is strongly
monotone with coefficient η−α . Hence, the variational inequality problem

Find q ∈C such that 〈F(q)− f (q),x−q〉 ≥ 0 for all x ∈C, (VIP)

has a unique solution which we denote by q∗ (see Lemma 2.1 below).
In the present work, we are concerned with the construction of a general iterative algorithm

that generates sequences converging strongly to q∗. Let us first recall some previous results
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related to this subject. In the particular case that Q = H , f ≡ u, a constant, and F = I, the
identity mapping from H into itself, Halpern [1] introduced the iterative process

x0 ∈H , xn+1 = αnu+(1−αn)T xn, (1.1)

where {αn}∈ [0,1]. He established that if αn =
1

nθ for all n≥ 0 with θ ∈]0,1[, then the generated
sequence {xn} converges strongly to q∗, which is in this case equal to PC(u), where PC : H →C
is the metric projection from H onto the closed and convex subset C = Fix(T ). He also pointed
out that the conditions (C1) limn→+∞ αn = 0 (C2) ∑

+∞

n=0 αn = +∞, are necessary for the strong
convergence of algorithm (1.1). In 1977, Lions [2] extended the Halpern’s result. In fact, he
proved the strong convergence of the sequences {xn} generated by process (1.1) to q∗ provided
that {αn} satisfies the necessary conditions (C1)-(C2) and the supplementary condition (C3)
limn→+∞

αn+1−αn
α2

n
= 0. In 2000, Moudafi [3] considered the case when Q = H , f : H →H is

a contraction with coefficient α ∈ [0,1[, and F = I the identity mapping from H into itself. He
introduced the algorithm

x0 ∈H , xn+1 = αn f (xn)+(1−αn)T xn, (1.2)

where {αn} ∈]0,1]. He established, under conditions (C1), (C2), and (C4) limn→+∞
αn+1−αn
αn+1αn

=

0, the strong convergence of any sequence generated by this algorithm to q∗ which in this
case is equal to the unique fixed point of the contraction mapping PC ◦ f . In 2004, Xu [4]
improved Moudafi’s result. In fact, he followed a new approach to prove the strong con-
vergence of algorithm (1.2) provided that sequence {αn} satisfies conditions (C1), (C2) and
(C5) limn→+∞

αn+1−αn
αn

= 0 or ∑
+∞

n=0 |αn+1−αn|<+∞. Xu [5] has also considered the case that
Q = H , f = u a constant, and F = A, an η− strongly positive self adjoint bounded linear
operator from H to H . He established the strong convergence of the algorithm

x0 ∈H , xn+1 = αnu+(I−αnA)T xn

to the unique solution q∗ of (VIP) provided that real sequence {αn} satisfies conditions (C1),
(C2), and (C5). Let us note here that, in this case, q∗ is the unique minimizer of the strongly
quadratic convex function 1

2〈Ax,x〉−〈u,x〉 over the closed and convex subset C = Fix(T ).
In 2006, Marino and Xu [6] established that the previous strong convergence result remains

true in the more general case that f : H →H is a Lipschitzian mapping with constant α strictly
less than η . On the other hand, Yamada [7] studied the particular case that Q = H and f ≡ 0.
He proved that if {αn} satisfies conditions (C1), (C2), and (C3), then, for every starting point
x0 ∈H , the sequence {xn} generated by the iterative process xn+1 = (I−αnF)T xn converges
strongly to q∗.

In 2010, Tian [8], by combining the iterative method of Yamada and the method of Mariano
and Xu, introduced the following general algorithm

x0 ∈H , xn+1 = αn f (xn)+(I−αnF)T xn.

He established the strong convergence of this algorithm to q∗ provided that {αn} satisfies con-
ditions (C1), (C2), and (C5).

In 2011, Ceng, Ansari and Yao [9] extended Tian’s result to the case that Q is not necessary
equal to the whole space H . Precisely, they proved that if sequence {αn} satisfies conditions
(C1), (C2) and (C5), then, for any starting point x0 in Q, the sequence {xn} defined by the
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scheme

xn+1 = PQ (αn f (xn)+(I−αnF)T xn)

converges strongly to q∗.
In this paper, in order to generalize and unify the previous results and to take account of the

possible computational errors, we introduce the following relaxed and perturbed algorithm:

x0 ∈ Q, xn+1 = βnxn +(1−βn)PQ (αn f (xn)+(I−αnF)T xn + en) , (1.3)

where {αn} and {βn} are two real sequences in [0,1] and {en} is a sequence in H representing
the perturbation. We will prove that any sequence {xn} generated by the algorithm converges
strongly to q∗ provided that the sequence {αn} in (1.3) satisfies only the necessary conditions
(C1) and (C2), the sequence {βn} in (1.3) is not too close to 0 or 1, and the perturbation {en} is
relatively small with respect to {αn}.

The paper is organized as follows. In Section 2, we recall some essential lemmas that are
used frequently in the proof of the results of the paper. Section 3 is devoted to the study of the
convergence of an implicit version of algorithm (1.3). The strong convergence of the iterative
algorithm (1.3) is investigated in Section 4. Section 5 is devoted to the study of the limit case
that the strong monotonicity coefficient of F is equal to the Lipschitzian coefficient of f . In the
last section, Section 6, we investigate, through some numerical experiments, the effect of the
sequences {βn} and {αn} on the stability and the rate of convergence of algorithm (1.3).

2. PRELIMINARIES

In this section, we recall some classical results that are useful in the proof of the main the-
orems of the paper. The first result is on the existence and the uniqueness of solutions of the
variational problem (VIP).

Lemma 2.1. Let λ ∈]0, µ−α

(κ+α)2 [. Then the mapping Ψλ : Q→ Q defined by Ψλ (x) = PC(x−
λ (F(x)− f (x))), where C =Fix(T ) is a contraction with coefficient ρ =

√
1−λ (µ−α). More-

over, the unique solution q∗ of the problem (VIP) is also the unique fixed point of Ψλ .

Proof. Define a mapping G : Q→ H by G(x) = F(x)− f (x). Let x,y ∈ Q. Using the facts
that PC is a nonexpancive and G is (µ −α) strongly monotone and Lipschitz continuous with
coefficient κ +α , we have

‖Ψλ (x)−Ψλ (y)‖2 ≤ ‖(x− y)−λ (G(x)−G(y))‖2

≤
(
1−2λ (µ−α)+λ

2(κ +α)2)‖x− y‖2

≤ ρ
2 ‖x− y‖2 ,

where ρ =
√

1−λ (µ−α) ∈]0,1[. This ends the proof of the first part of the lemma.
The second part of the lemma is a simple consequence of the variational characterization of

the metric projection PC. In fact, q = Ψλ (q) is equivalent to q∈C and 〈q−(q−λG(q),x−q〉 ≥
0, ∀x ∈C, which is clearly equivalent to q, a solution to the problem (VIP). �

The next result is a powerful lemma proved by Xu in [10]. This lemma is a generalization of
a result due to Bertsekas (see [11, Lemma 1.5.1]).
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Lemma 2.2. Let {an} be a nonnegative real sequence with an+1 ≤ (1− γn)an + γnrn +δn, n≥
0, where {γn} ∈ [0,1], and {rn} and {δn} are two real sequences such that ∑

+∞

n=0 γn = +∞;
∑
+∞

n=0 |δn|<+∞; limsupn→+∞ rn ≤ 0. Then sequence {an} converges to 0.

The third result is the following lemma due to Suzuki [12].

Lemma 2.3. Let {zn} and {wn} be two bounded sequences in a Banach space E, and let {βn} be
a sequence in [0,1] with 0< liminfn→∞ βn≤ limsupn→∞ βn < 1. Suppose that zn+1 = βnzn+(1−
βn)wn, n≥ 0 and limsupn→∞ (‖wn+1−wn‖−‖zn+1− zn‖)≤ 0. Then limn→∞ ‖zn−wn‖= 0.

The last result of this section is a particular case of the well-known demiclosedness principle
(see [13, Corollary 4.18]).

Lemma 2.4. Let {xn} be a sequence in Q. If {xn} converges weakly to some x and {xn−T xn}
converges strongly to 0, then x ∈ Fix(T ).

3. THE CONVERGENCE OF AN IMPLICIT VERSION OF THE ALGORITHM (HPA)

In this section, we prove the strong convergence of the perturbed and implicit algorithm
xt = PQ(t f (xt)+ (I− tF)T xt + e(t)). {xt}, as t → 0+, converges to the unique solution q∗ of
the variational inequality problem (VIP) provided that the perturbation e(t) is sufficiently small.
More precisely, we prove the following theorem.

Theorem 3.1. Set δ0 := min{1, 1
2η
, η−α

κ2 }. Let e :]0,δ0] → H such that limt→0+
‖e(t)‖

t = 0.
Then, for every t ∈]0,δ0], there exists a unique xt ∈ Q such that xt = PQ(t f (xt)+(I− tF)T xt +
e(t)). Moreover, xt converges strongly in H as t → 0+ toward q∗, the unique solution of the
variational inequality problem (VIP).

The proof essentially relies on the following lemma, which will also be used in the next
section, devoted to the study of the strong convergence of the algorithm (HPA).

Lemma 3.1. For every t ∈]0,δ0], the mapping St : Q→H defined by St(x)= t f (x)+(I−tF)T x
is Lipschitzian with coefficient µt = 1− tσ0 ∈]0,1[, where σ0 =

η−α

2 .

Proof. Let t ∈]0,δ0] and x,y ∈ Q. We have

‖(I− tF)T x− (I− tF)Ty‖2

= ‖T x−Ty‖2−2t〈F(T x)−F(Ty),T x−Ty〉+ t2 ‖F(T x)−F(Ty)‖2

≤
(

1−2t(η− tκ2

2
)

)
‖x− y‖2 .

Since 0 < t ≤ δ0 ≤min{2η

κ2 ,
1

2η
}, we have 0≤ 2t(η− tκ2

2 )≤ 1. Then, by using the elementary
inequality

√
1− x≤ 1− x

2 , for all x ∈ [0,1], we deduce that

‖(I− tF)T x− (I− tF)Ty‖ ≤
(

1− t(η− tκ2

2
)

)
‖x− y‖ .
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Therefore,

‖St(x)−St(y)‖ ≤ t ‖ f (x)− f (y)‖+‖(I− tF)T x− (I− tF)Ty‖

≤
(

tα +1− t(η− tκ2

2
)

)
‖x− y‖

≤
(

1− t(η−α− κ2δ0

2
)

)
‖x− y‖

≤ (1− η−α

2
t)‖x− y‖(since δ0 ≤

η−α

κ2 )

= (1−σ0t)‖x− y‖ ,

Finally, the facts η > α and δ0 < 1
2η

ensure that σ0 > 0 and that, for every t ∈]0,δ0], µt =

1−σ0t ∈]0,1[. This completes the proof. �

Now, we are in position to prove Theorem 3.1.

Proof. Let t ∈]0,δ0]. Since PQ is nonexpansive, it follows from the previous lemma that the
two mapping ϕt and φt , defined from Q to Q by ϕt(x) = PQ (St(x)) and φt(x) = PQ (St(x)+ e(t))
are contractions with the same coefficient 1−tσ0 ∈ [0,1[. Hence the classical Banach fixed point
theorem ensures the existence and the uniqueness of xt and yt in Q such that xt =PQ (St(xt)+ e(t))
and yt = PQ (St(yt)) . Reusing Lemma 3.1 and the fact that PQ is nonexpansive, we obtain
‖xt− yt‖ ≤ (1− tσ0)‖xt− yt‖+‖e(t)‖ , which implies that ‖xt− yt‖ ≤ ‖e(t)‖tσ0

. Hence, from the
assumption on e(t), we have ‖xt− yt‖→ 0 as t→ 0+. Therefore, in order to prove that xt → q∗

as t→ 0+, it suffices to prove that yt→ q∗ as t→ 0+. To do this, let us first prove that the family
(yt)0<t≤δ0 is bounded in H . Pick q ∈ Fix(T ). By using the fact that PQ is nonexpansive and
Lemma 3.1, we easily deduce that, for every t ∈]0,δ0],

‖yt−q‖ ≤ ‖PQ(St(yt))−PQ(St(q))‖+‖PQ(St(q))−PQ(q)‖
≤ ‖St(yt)−St(q)‖+‖St(q)−q‖
≤ (1− tσ0)‖yt−q‖+ t ‖ f (q)−F(q)‖ .

Hence, sup0<t≤δ0
‖yt−q‖≤ ‖ f (q)−F(q)‖

σ0
, which implies that (yt)0<t≤δ0 is bounded in H , and so

is ( f (yt)−F(Tyt))0<t≤δ0
since the mapping f −F ◦T is Lipschitz continuous (with Lipschitz

constant α +κ). Therefore,

yt−Tyt → 0 in H as t→ 0+. (3.1)

For every t ∈]0,δ0], we have

‖yt−Tyt‖= ‖PQ(S(yt))−PQ(Tyt)‖ ≤ ‖St(yt)−Tyt‖= t ‖ f (yt)−F(Tyt)‖ .

On the other hand, since (yt)0<t≤δ0 is bounded in H , there exists a sequence (tn)n ∈]0,δ0]
which converges to 0 such that the sequence {ytn} converges weakly in H to some y and

limsup
t→0+

〈yt−q∗, f (q∗)−F(q∗)〉= lim
n→+∞

〈ytn−q∗, f (q∗)−F(q∗)〉= 〈y−q∗, f (q∗)−F(q∗)〉.
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Thanks to Lemma 2.4, we deduce from (3.1) that y ∈ Fix(T ). Hence, from the definition of q∗,
we infer that limsupt→0+〈yt−q∗, f (q∗)−F(q∗)〉 ≤ 0, which together with (3.1) obtains

lim sup
t→0+
〈Tyt−q∗, f (q∗)−F(q∗)〉 ≤ 0. (3.2)

Now, for every t ∈]0,δ0], we have

‖yt−q∗‖2 ≤ ‖St(yt)−q∗‖2

= ‖St(yt)−St(q∗)‖2 +2〈St(yt)−q∗,St(q∗)−q∗〉−‖St(q∗)−q∗‖2

≤ ‖St(yt)−St(q∗)‖2 +2〈St(yt)−q∗,St(q∗)−q∗〉

≤ (1− tσ0)
2 ‖yt−q∗‖2 +2t〈Tyt−q∗, f (q∗)−F(q∗)〉

+2t2〈 f (yt)−F(Tyt), f (q∗)−F(q∗)〉,

where we used the facts that St(yt) = Tyt + t( f (yt)−F(Tyt) and St(q∗)−q∗ = t( f (q∗)−F(q∗).
Recalling that (yt)0<t≤δ0 and ( f (yt)−F(Tyt))0<t≤δ0

are bounded in H , we deduce that there
exists a positive constant C such that, for every t ∈]0,δ0],

‖yt−q∗‖2 ≤ (1−2σ0t)‖yt−q∗‖2 +2t 〈Tyt−q∗, f (q∗)−F(q∗)〉+Ct2.

Therefore, for every t ∈]0,δ0],

‖yt−q∗‖2 ≤ 1
σ0

(
〈Tyt−q∗, f (q∗)−F(q∗)〉+ C

2
t
)

Hence, by using (3.2), we conclude that yt→ q∗ in H as t→ 0+. This completes the proof. �

4. THE CONVERGENCE OF THE ALGORITHM (HPA)

In this section, we study the strong convergence of the averaged and perturbed algorithm
(HPA)

xn+1 = βnxn +(1−βn)PQ (αn f (xn)+(I−αnF)T xn + en.) (HPA)

We prove the following result.

Theorem 4.1. Let {en} be a sequence in H , and let {αn} ∈]0,1] and {βn} ∈ [0,1] be two real
sequences such that:

(i) αn→ 0 and ∑
+∞

n=0 αn =+∞

(ii) One of the two following two conditions is satisfied:
(h1) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1.
(h2) limsupn→∞ βn < 1, either βn+1−βn

αn
→ 0 or ∑

+∞

n=0 |βn+1−βn|< ∞ and either αn+1−αn
αn

→ 1
or ∑

+∞

n=0 |αn+1−αn|< ∞.

(iii) ∑
+∞

n=0 ‖en‖< ∞ or ‖en‖
αn
→ 0.

Then, for every x0 ∈Q, the sequence {xn} generated by the algorithm (HPA) converges strongly
in H to q∗ the unique solution of the variational inequality problem (VIP).
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Proof. Since we are only interested in the study of the asymptotic behavior of the sequence {xn}
and αn→ 0 as n→ ∞, we can assume without loss of generality that, for all n ∈ N, αn ∈]0,δ0],
where δ0 is the real defined in Theorem 3.1. Let {yn} be the sequence defined as follows

y0 = x0, yn+1 = βnyn +(1−βn)PQ(αn f (yn)+(I−αnF)Tyn), n≥ 0.

Using the fact PQ is nonexpansive and Lemma 3.1, we obtain

‖yn+1− xn+1‖ ≤ βn ‖yn− xn‖+(1−βn)‖PQ(Sαn(yn))−PQ(Sαn(xn)+ en)‖
≤ [βn +(1−βn)(1−σ0αn)]‖yn− xn‖+(1−βn)‖en‖
≤ (1− γn)‖yn− xn‖+‖en‖ ,

where γn = σ0(1− βn)αn. Since limsupn→∞ βn < 1, there exist a > 0 and n0 ∈ N such that
aαn ≤ γn ≤ 1 for all n≥ n0. Hence, by applying Lemma 2.2, we deduce that

yn− xn→ 0. (4.1)

Therefore, it suffices to prove that {yn} converges strongly to q∗ to conclude that {xn} also
converges strongly to q∗.

Let us first prove that {yn} is bounded in H . Let q ∈ Fix(T ). For every n ∈ N, we have

‖yn+1−q‖ ≤ βn ‖yn−q‖+(1−βn)[‖PQ(Sαn(yn))−PQ(Sαn(q))‖+‖PQ(Sαn(q))−PQ(q)‖]
≤ βn ‖yn−q‖+(1−βn)[‖Sαn(yn)−Sαn(q)‖+‖Sαn(q)−q‖]
≤ βn ‖yn−q‖+(1−βn) [(1−σ0αn)‖yn−q‖+αn ‖ f (q)−F(q)‖] .

The last inequality immediately implies that the sequence vn := max{‖yn−q‖ , ‖ f (q)−F(q)‖
σ0

} is
decreasing. Therefore, {yn} is bounded in H , so are { f (yn)} and {F(Tyn)} since the mappings
f and F ◦T are Lipschitz continuous.

Now we prove that
yn−Tyn→ 0. (4.2)

Let us first assume that condition (h1) is satisfied. For every n ∈ N, setting

zn = PQ (αn f (yn)+(I−αnF)Tyn) ,

we have, the sequences {yn} and {zn} are bounded in H , yn+1 = βnyn+(1−βn)zn for every n,
and

‖zn+1− zn‖ ≤ (αn +αn+1) sup
m≥0
‖ f (ym)−F(Tym)‖+‖Tyn+1−Tyn‖

≤ (αn +αn+1) sup
m≥0
‖ f (ym)−F(Tym)‖+‖yn+1− yn‖

which implies limsupn→∞ ‖zn+1− zn‖−‖yn+1− yn‖ ≤ 0. Therefore, from Lemma 2.3, we de-
duce that zn− yn→ 0, which together with the fact that

‖zn−Tyn‖= ‖PQ (αn f (yn)+(I−αnF)Tyn)−PQ(Tyn)‖
≤ αn sup

m≥0
‖ f (ym)−F(Tym)‖→ 0 as n→+∞,

implies the required result (4.2).
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Let us now establish (4.2) under the assumption (h2). A simple computation with the fact that
the sequence {yn} and {PQ (αn f (yn)+(I−αnF)Tyn)} are bounded in H ensures the existence
of two real constants M1,M2 > 0 such that, for every n ∈ N,

‖yn+1− yn‖ ≤ βn ‖yn− yn−1‖+(1−βn)
∥∥PQ(Sαn(yn))−PQ(Sαn−1(yn−1))

∥∥+M1 |βn−βn−1|
≤ βn ‖yn− yn−1‖+(1−βn)

∥∥Sαn(yn)−Sαn−1(yn−1)
∥∥+M1 |βn−βn−1|

≤ βn ‖yn− yn−1‖+(1−βn)‖Sαn(yn)−Sαn(yn−1)‖
+(1−βn)

∥∥Sαn(yn−1)−Sαn−1(yn−1)
∥∥+M1 |βn−βn−1|

≤ (1−σ0(1−βn)αn)‖yn− yn−1‖+M1 |βn−βn−1|+M2 |αn−αn−1| .

Hence, by proceeding as in the proof of (4.1), we infer that

‖yn+1− yn‖→ 0. (4.3)

On the other hand, for every n ∈ N, we have

‖yn+1−Tyn‖ ≤ βn ‖yn−Tyn‖+(1−βn)‖PQ(Sαn(yn))−PQ(Tyn)‖
≤ βn ‖yn+1−Tyn‖+βn ‖yn+1− yn‖+‖Sαn(yn)−Tyn‖
≤ βn ‖yn+1−Tyn‖+‖yn+1− yn‖+αn ‖ f (yn)−F(Tyn)‖ .

Hence, we obtain the inequality

‖yn+1−Tyn‖ ≤
1

1−βn

(
‖yn+1− yn‖+αn sup

m≥0
‖ f (ym)−F(Tym)‖

)
,

which together with (4.3) and the fact that limsupn→+∞ βn < 1 implies that ‖yn+1−Tyn‖ → 0.
Hence, from (4.3), we obtain (4.2).

Next, we use the fundamental lemma, Lemma 2.2, to conclude that {yn} converges strongly
to q∗. By proceeding as in the proof of Theorem 3.1 and by using (4.2) and the fact that {yn}
is bounded, we deduce that limsupn→∞〈yn−q∗, f (q∗)−F(q∗)〉 ≤ 0, which together with (4.2)
yields

lim sup
n→∞

〈Tyn−q∗, f (q∗)−F(q∗)〉 ≤ 0. (4.4)

Finally, for every n ∈ N,

‖yn+1−q∗‖2 ≤ βn ‖yn−q∗‖2 +(1−βn)‖PQ(Sαn(yn))−PQ(q∗)‖2

≤ βn ‖yn−q∗‖2 +(1−βn)‖Sαn(yn))−q∗‖2

= βn ‖yn−q∗‖2 +(1−βn)[‖Sαn(yn))−Sαn(q
∗)‖2

+2〈Sαn(yn))−q∗,Sαn(q
∗)−q∗〉−‖Sαn(q

∗)−q∗‖2]

≤ βn ‖yn−q∗‖2 +(1−βn)[(1−αnσ0)
2 ‖yn−q∗‖2

+2α
2
n 〈 f (yn)−F(Tyn), f (q∗)−F(q∗)〉+2αn〈Tyn−q∗, f (q∗)−F(q∗)〉]

≤ (1− γn)‖yn−q∗‖2 + γnrn

where C > 0 is a constant independent of n, γn = 2σ0(1−βn)αn, and

rn =
1

σ0
(〈Tyn−q∗, f (q∗)−F(q∗)〉+Cαn) .
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Using estimate (4.4), we obtain limsuprn ≤ 0. Hence, by applying Lemma 2.2, we conclude
as previously that the sequence {yn} converges strongly to q∗. This completes the proof of
Theorem 4.1. �

5. THE STUDY OF THE LIMIT CASE µ = α

Throughout this section, we assume that µ =α. In this limit case, the operator F− f is mono-
tone but not necessary strongly monotone; so the uniqueness of the solution of the variational
inequality problem (VIP) is no long assured. Moreover, We assume that (VIP) has at least one
solution. We denote by SV IP the set of the solutions of (VIP). The following theorem provides
a method to approximate a particular element of the set SV IP.

The following lemma is essential to the theorem in this section.

Lemma 5.1. (Bruck [14]) Let A : D(A) ⊂H → 2H be a maximal monotone operator with
A−1(0) 6=∅. Then for any u ∈H , (I + tA)−1u→ PA−1(0)(u) as t→+∞.

Theorem 5.1. Assume that the sequences {αn}, {βn}, and {en} satisfy the same assumptions
as in Theorem 4.1. Then, for every ε > 0 and x0 ∈Q, the sequence {xε

n} defined by the recursive
formula

xε
n+1 = βnxε

n +(1−βn)PQ (αn f (xε
n)+((1−αnε)I−αnF)T xε

n + en) , n≥ 0,

converges strongly to qε , the unique solution to the variational inequality problem

Find q ∈C such that 〈F(q)+ εq− f (q),x−q〉 ≥ 0, ∀x ∈C. (VIPε )

Moreover, set SV IP is closed and convex and qε converges strongly as ε → 0 to the nearest
element of SV IP to the origin.

Proof. For every ε > 0, Fε := F +εI is µ +ε strongly monotone and κ +ε Lipschitizian. Since
µ + ε > α, the first part of this theorem follows immediately from Theorem 4.1.

Let δC : C→H be the indicator function associated to the closed, convex, and nonempty
subset C. Recall that δC is defined by

δC(x) =
{

0, x ∈C,
+∞, x /∈C.

It is well known that δC is a proper, lower semi-continuous, and convex function. Hence, its
sub-gradient ∂δC is a maximally monotone operator with the domain equal to C. We recall
that, for every x ∈ C, ∂δC(x) = {u ∈H : 〈u,y− x〉 ≤ 0}. It is then easily seen that set SV IP
is equal to A−1(0), the set of zeros of the operator A := F − f + δC. From [15], operator A is
maximally monotone. Therefore, SV IP is a closed and convex subset of H . On the other hand,
the unique solution qε of (VIPε ) satisfies the relation −(F(qε)+ εqε − f (qε)) ∈ δC(qε), which
is equivalent to 0 ∈ qε + 1

ε
A(qε), since 1

ε
δC(qε) = δC(qε). Therefore, qε = J1

ε

(0), where for

every λ > 0, Jλ = (I + λA)−1 is the resolvent of A (for more details, see the pioneer paper
[16] of Minty). Hence, from Lemma 5.1, we deduce that qε converges strongly as ε → 0 to
PA−1(0) = PSV IP(0) which is the element of SV IP with minimal norm. �
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Remark 5.1. From the previous theorem, we expect, but we do not yet have the justification,
that, under some appropriate assumptions on the real sequences {αn}, {βn} and {εn}, the se-
quences {xn} generated by the iterative process

xn+1 = βnxn +(1−βn)PQ (αn f (xn)+((1−αnεn)I−αnF)T xn) , n≥ 0,

where x0 is an arbitrary element of Q, converge strongly in H to u∗ = PSV IP(0). Observe that
Reich and Xu in [17] raised a similar open question related to the constrained least squares
problem

6. NUMERICAL EXPERIMENTS

In this section, we aim to study, through some simple numerical experiments, the effects
of the sequences {αn} and {βn} on the stability and the rate of convergence of the perturbed
algorithm (HPA). We consider here the simple example:

(1) The Hilbert space H is R2 endowed with its natural inner product 〈x,y〉= x1y1 + x2y2
and associated Euclidean norm ‖x‖=

√
〈x,x〉.

(2) The closed and convex subset Q is given by: Q = {x = (x1,x2)
t ∈ R2 : x1,x2 ≥ 0}.

(3) The mapping f : Q→Q is defined by f (x) = (5+cos(x1+x2),6− sin(x1+x2))
t for all

x = (x1,x2)
t ∈ Q. One can easily verify that f is a Lipschitz continuous function with

Lipschitz constant α =
√

2' 1.41.
(4) The mapping F : Q→R2 is the given by: F(x) = Ax, for every x = (x1,x2)

t ∈Q, where

A =

(
8 2
2 4

)
.

Since the matrix A is symmetric and defined positive, F is strongly monotone with
coefficient µ = λ1(A) = 2(3−

√
2) ' 3.17 (the smallest eigenvalue of A and Lipschitz

continuous with coefficient κ = λ2(A) = 2(3+
√

2)' (the largest eigenvalue of A).
(5) The nonexpansive mapping T : Q→ Q is defined by: T (x) = PQ((x2− 4,x1 + 4)t) for

every x = (x1,x2)
t ∈Q. It is clear that C = Fix(T ) = {x = (x1,x2)

t ∈Q : x2−x1 = 4}. In
this simple case, the projection PC is explicitly defined by:

PC((x1,x2)
t) =

{
(0,4)t if x1 + x2 ≤ 4,

(x1+x2
2 −2, x1+x2

2 +2)t if x1 + x2 ≥ 4.

Hence a simple routine on Matlab, using Lemma 2.1 and the iterative algorithm of
Banach, gives a precise numerical approximation value of the solution q∗ of the problem

(VIP) q∗ =
(

0
4

)
.

(6) The perturbation (or error computational) term {en} is given by en = 6
n2 Xn, where

{Xn} is sequence of independent variables such that every Xn is uniform on the square
[−1,1]× [−1,1].

(7) The sequence {αn} takes the form αn =
1

nθ where θ ∈]0,1].
(8) The sequence {βn} is equal to a constant β ∈]0,1[.

We can summarize our numerical results in the following four points:
(A) The choice of the sequence {βn} close to 1 reduces the fluctuation of the algorithm due

to the perturbation term {en}. This fact is illustrated by Figure 1 with θ = 0.8 and β

taking the values 0.1, 0.5, and 0.9.
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FIGURE 1. The effect of β on the fluctuation and stability the algorithm (HPA)

(B) The sequence {βn} has practically no effect on the convergence rate of the algorithm
(HPA) as it is shown in Table 1 and Figure 2 with θ = 0.8 and β taking the values
0.1,0.5, and 0.9.

ε β = 0.1 β = 0.5 β = 0.9
0.1 291 292 300

0.05 687 687 695
0.01 5103 5104 5112

TABLE 1. K(ε,β ) := min{k ≤ Nmax : ‖xk−q∗‖ ≤ ε}
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FIGURE 2. The effect of β on the convergence rate of the algorithm (HPA)

(C) If θ is small (close to 0), the convergence of {xn} to q∗ is very slow and not clear (see
Table 2).
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θ mink≤Nmax ‖xk−q∗‖
0.1 2.2361
0.2 1.9077
0.3 0.7258
0.4 0.2916

TABLE 2. Slow convergence of the algorithm (HPA) for small values of θ

(D) The convergence rate of {xn} to q∗ increases as θ approaches 1. This fact is illustrated
in Table 3 and Figure 6 with β = 0.5 and θ taking the values 0.6,0.8, and 1. Observe
here that, in Table 3, N(ε,θ) = ND (Not Defined) means that ‖xk−q∗‖> ε} for all the
iterations k ≤ Nmax.

ε θ = 0.6 θ = 0.8 θ = 1.0
0.50 141 43 22
0.10 1916 292 95
0.05 ND 687 188
0.01 ND 5104 928
0.005 ND ND 1852
0.002 ND ND 4625

TABLE 3. N(ε,θ) := min{k ≤ Nmax : ‖xk−q∗‖ ≤ ε}
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FIGURE 3. The convergence of the algorithm (HPA) for θ close to 1

Conclusion: The convergence of the algorithm (HPA) is in general very slow especially when
the sequence {αn} converges slowly towards zero. The sequence {βn} plays a role on the
stability of the algorithm (HPA). In fact, it can reduce the fluctuation of the algorithm but {βn}
has practically no effect on the speed of the convergence of the algorithm.
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